Numerische Methoden der Dynamik

Sommersemester

Inhalt der Vorlesung

Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme. Grundlagen der numerischen Mathematik: Numerische Prinzipe, Maschinenzahlen, Fehleranalyse. Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Zerlegung, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem. Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren. Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren), Extrapolationsverfahren, Mehrschrittverfahren. Werkzeuge und numerische Bibliotheken für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich.

Informationen zur Vorlesung

Vorlesung und Vortragsübungen
  • Für Studierende der Studiengänge Maschinenwesen, Mechatronik, Techischer Kybernetik, Technologiemanagement, Fahrzeug- und Motorentechnik, Mathematik und Commas.
  • Die Vorlesung findet vollständig in Präsenz statt.
  • Montags, 11.30 - 13.00 Uhr im Hörsaal V55.01
    Donnerstags, 11.30 - 13.00 Uhr im Hörsaal V47.04
  • Die erste Vorlesung im Sommersemester 2022 findet am Montag, den 11. April 2022 statt.
Vorlesungsunterlagen

Aufgaben- und Merkblätter finden Sie bei den Unterlagen.

Sprache

Die Vorlesung wird in deutscher Sprache gehalten.

Institut

Die Räume des Institut für Technische und Numerische Mechanik befinden sich im Ingenieurwissenschaftlichen Zentrum (IWZ), Pfaffenwalding 9, 3. und 4. Stock.

Kontakt

Dr.-Ing. Pascal Ziegler und Andreas Baumann, M.Sc.

  • 1. Einleitung
  • 2. Grundlagen der Numerischen Mathematik
    • 2.1 Begriffe
    • 2.2 Numerische Prinzipe
    • 2.3 Maschinenzahlen
    • 2.4 Fehleranalyse
  • 3. Lineare Gleichungssysteme
    • 3.1 Problemstellung
    • 3.2 Direkte Methoden bei quadratischer Koeffizientenmatrix
    • 3.3 Cholesky-Zerlegung
    • 3.4 Gauss-Elimination
    • 3.5 LR-Zerlegung
    • 3.6 QR-Zerlegung
    • 3.7 Iterative Methoden bei quadratischer Koeffizientenmatrix
    • 3.8 Determinante einer Matrix
    • 3.9 Inverse einer Matrix
    • 3.10 Lineares Ausgleichsproblem
    • 3.11 Werkzeuge und numerische Bibliotheken für lineare Gleichungen
  • 4. Eigenwertproblem
    • 4.1 Grundlagen
    • 4.2 Normalformen
    • 4.3 Vektoriteration
    • 4.4 Berechnung von Eigenwerten mit dem QR-Verfahren
    • 4.5 Berechnung von Eigenvektoren
    • 4.6 Praktische Lösung des Eigenwertproblems
    • 4.7 Werkzeuge und numerische Bibliotheken für Eigenwertprobleme
  • 5. Anfangswertprobleme bei gewöhnlichen Differentialgleichungen
    • 5.1 Problemstellung
    • 5.2 Grundlagen
    • 5.3 Einschrittverfahren
    • 5.4 Extrapolationsverfahren
    • 5.5 Mehrschrittverfahren
    • 5.6 Vergleich der Verfahren
    • 5.7 Werkzeuge und numerische Bibliotheken für Anfangswertprobleme

 

Aktuelles

Vorlesung SoSe 2022

Die Vorlesung im Sommersemester 2022 findet in Präsenz statt. Nähere Details finden Sie im Reiter "Organisatorische Hinweise".

Raumänderung am 21. Juli

Die Vorlesung findet am 21. Juli in Raum V38.01 statt.

Prüfungssprechstunde

Akutelle Informationen zur Prüfungssprechstunde finden Sie unter dem Link Sprechstunden des Instituts.

Dieses Bild zeigt Pascal Ziegler

Pascal Ziegler

Dr.-Ing., Akademischer Oberrat
Zum Seitenanfang