

Punktabbildungen in der Nichtlinearen Dynamik

Die Untersuchung nichtlinearer Abbildungen

$$z^{(k+1)} = \phi(x^{(k)})$$

ist auch Teil der Nichtlinearen Dynamik. Entsprechend der Struktur der Rekursionsfunktion und in Abhängigkeit von Abbildungsparametern können solche Abbildungen Fixpunkte, periodische Lösungen, quasi-periodische Lösungen oder chaotisches Verhalten aufweisen.

Beispiel: Logistische Abbildung

 $x^{(k+1)} = \mu x^{(k)} (1 - x^{(k)}), \quad x \in [0,1], \quad \mu \in [0,4]$

 a) Bestimmen Sie die Fixpunkte x* der Abbildung in Abhängigkeit des Abbildungsparameters μ:

b) Bestimmen Sie die Ableitungen der Abbildungsfunktion an den Fixpunkten:

$$\phi'(x_1^*) = ,$$

 $-----$
 $\phi'(x_2^*) = .$

c) Geben Sie Intervalle für den Parameter μ an, in denen die Abbildung gegen den Fixpunkt x_1^* bzw. x_2^* konvergiert:

$$x_1^*$$
 ist stabiler Fixpunkt für $\mu \in \begin{pmatrix} , \\ ---- \end{pmatrix}$,
 x_2^* ist stabiler Fixpunkt für $\mu \in \begin{pmatrix} , \\ ---- \end{pmatrix}$.

d) Führen Sie die Iteration für folgende Parameterwerte graphisch durch:

e) Das vollständige Lösungsverhalten in Abhängigkeit des Abbildungsparameters μ zeigt folgendes Bifurkationsdiagramm. Zeichnen Sie die Fixpunktkurven und Ihre Iterationslösungen in dieses Diagramm ein.

Gleichgewichtslage beim gefederten Doppelpendel

Im Allgemeinen ist die Nullstellensuche ein vektorieller Ansatz, der auch bei mehrdimensionalen Problemen angewandt werden kann. Im Folgenden soll mit Hilfe einer vektoriellen Nullstellensuche die Gleichgewichtslage des oben dargestellten Doppelpendels mit Feder (Federsteifigkeit *c*) bestimmt werden.

Unter Verwendung der verallgemeinerten Koordinaten $y = [\alpha, \beta]$ ergeben sich die folgenden Bewegungsgleichungen für das Doppelpendel:

$$\underbrace{\begin{bmatrix} 2l_1^2m & l_1^2m\cos(\alpha-\beta)\\ l_1^2m\cos(\alpha-\beta) & l_1^2m \end{bmatrix}}_{\mathbf{M}(\mathbf{y})} \cdot \underbrace{\begin{bmatrix} \ddot{\alpha}\\ \ddot{\beta}\\ \ddot{y} \end{bmatrix}}_{\dot{y}} + \underbrace{\begin{bmatrix} l_1^2m\sin(\alpha-\beta)\dot{\beta}^2\\ l_1^2m\sin(\beta-\alpha)\dot{\alpha}^2 \end{bmatrix}}_{\mathbf{k}(\mathbf{y},\mathbf{y})}$$
$$= \underbrace{\begin{bmatrix} -2mgl_1\sin\alpha + l_1l_2c\cos\alpha + l_1^2c\sin(\alpha-\beta)\\ cl_1l_2\cos\beta - l_1mg\sin\beta - l_1^2c\sin(\alpha-\beta) \end{bmatrix}}_{\mathbf{q}_{\mathbf{e}}(\mathbf{y})}$$

a) Welche Bedingungen gelten für den Gleichgewichtszustand des Pendels?

 b) Vereinfachen Sie damit die Bewegungsgleichungen des Pendels auf ein Nullstellenproblem:

Für dieses Nullstellenproblem ist ein geeigneter Lösungsansatz zu formulieren, dem eine lineare Taylor–Approximation der Zielfunktion zugrunde liegt. Dies führt auf die vektorielle Newton–Raphson–Nullstellensuche. Allgemein gilt im skalaren Fall für beliebige Funktionen f(y) die Taylor–Approximation

$$f(y) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(y_0)(y - y_0)^k$$

c) Beschreiben Sie die Taylor–Entwicklung der vektoriellen Funktion f(y). Brechen Sie die Taylor–Reihe nach dem linearen Glied ab:

 $f(y^*) \approx$

d) Formulieren Sie die Taylor–Entwicklung für den Fall f(y) = 0 so um, dass eine Schrittfunktion vom k–ten auf den (k + 1)–ten Iterationsschritt der Nullstellensuche entsteht:

 $\mathbf{y}^{(k+1)} = \mathbf{y}^{(k)}$

e) Bestimmen Sie die für die Schrittfunktion benötigte Iterationsmatrix:

*

Die Schrittfunktion wurde in einem Computerprogramm realisiert. Eine Nullstellensuche mit den Parametern $m = 1 \text{ kg}, g = 10 \frac{\text{m}}{\text{s}^2}, l_1 = 1 \text{ m}, l_2 = 1.5 \text{ m}, c = 5 \frac{\text{N}}{\text{m}}$ und den An-

fangswerten $\alpha^{(0)} = \beta^{(0)} = 0$ führt auf folgenden Iterationsverlauf:

no.	y(1)	y(2)	f(1)	f(2)	dy	f
1	0.0000	0.0000	7.5000	7.5000	1.5000	15.000
2	4163E-16	1.5000	2.5125	-4.4560	0.71334	6.9695
3	0.13820	0.92490	1.13240	.6873E-01	0.906E-01	1.2012
4	0.20792	0.90398	0.3917E-02	1334E-01	0.2577E-02	0.1726E-01
5	0.20858	0.90206	0.9946E-05	4693E-05	0.1719E-05	0.14639E-04
6	0.20858	0.90206	0.3743E-11	3326E-11	0.9054E-12	0.70688E-11
7	0.20858	0.90206	9378E-17	3003E-15	0.4884E-16	0.30970E-15

f) Geben Sie die Gleichgewichtslage des Pendels in Grad an:

 $\alpha =$ und $\beta =$.

g) Zeichnen Sie die Gleichgewichtslage des Doppelpendels in die Zeichnung ein:

Zur Verwendung der Newton–Raphson–Iteration muss die Iterationsmatrix angegeben werden. Oft liegt diese nicht analytisch vor oder ist nur sehr teuer zu bestimmen. Dann kann ein Sekantenverfahren, das die Iterationsmatrix $A^{(k)}$ approximiert, vorteilhaft eingesetzt werden:

$$\mathbf{y}^{(k+1)} = \mathbf{y}^{(k)} - \mathbf{A}^{(k)^{-1}} \cdot f(\mathbf{y}^{(k)}).$$

Die Festlegung der Iterationsmatrix erfolgt durch die Sekantengleichung:

$$A^{(k+1)} \cdot (y^{(k+1)} - y^{(k)}) = f(y^{(k+1)}) - f(y^{(k)}).$$

Diese Sekantengleichung legt nur einen Teil der Koeffizienten von $A^{(k+1)}$ fest. Zur vollständigen Beschreibung dient der sogenannte Broyden–Update, der eine geringstmögliche Veränderung der Iterationsmatrix, welche die Sekantengleichung nicht verletzt, anstrebt:

$$A^{(k+1)} = A^{(k)} + \frac{\left(f(y^{(k+1)}) - f(y^{(k)}) - A^{(k)}(y^{(k+1)} - y^{(k)})\right)(y^{(k+1)} - y^{(k)})}{(y^{(k+1)} - y^{(k)})(y^{(k+1)} - y^{(k)})}.$$

Diese Bequemlichkeit muss mit einem Abfall der Konvergenzrate von 2 auf 1.618 erkauft werden. Dies ist auch am Doppelpendel zu erkennen, das nun mit dem MIN-PACK–Unterprogramm HYBRD1, welches ein Broyden–Update durchführt, bearbeitet wurde:

no.	y(1)	y(2)	f(1)	f(2)	dy	f
1	0.8941E-08	1.5000	2.5125	-4.4569	1.5000	5.1164
2	0.33851	0.72855	-1.4683	0.83933	0.84245	1.6913
3	0.22830	0.88009	25404	0.10320	0.18738	0.27421
4	0.20652	0.90503	0.2411E-01	1657E-01	0.3310E-01	0.29254E-01
5	0.20852	0.90211	0.7643E-03	1582E-03	0.3541E-02	0.78045E-03
6	0.20858	0.90206	4922E-04	0.1871E-04	0.755E-04	0.52655E-04
7	0.20858	0.90206	0.1545E-05	0.597E-06	0.5318E-05	0.16564E-05
8	0.20858	0.90206	1624E-08	0.6255E-09	0.1734E-06	0.17403E-08
9	0.20858	0.90206	0.3238E-12	1249E-12	0.1822E-09	0.34703E-12
10	0.20858	0.90206	9378E-17	3003E-15	0.3634E-13	0.30047E-15

J.E. Dennis; R.B. Schnabel:

Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs: Prentice–Hall, 1983.

N.N.: MINPACK Index-documentation. Available under NETLIB:

http://www.netlib.no/netlib/minpack/index.html

Eigenfrequenzen einer Brücke

Die Berechnung der Eigenfrequenzen ω_i einer Brücke führt entsprechend Merkblatt M 2.3 auf die gewöhnliche Differentialgleichung

$$W^{IV} - \gamma^4 W = 0$$

für die Ortsfunkton W(x), welche die Eigenformen beschreibt. Die Randbedingungen sind W(0) = W(1) = W'(0) = W'(1) = 0

Dieses Randwertproblem ist nur für bestimmte Werte des Parameters $\gamma^4 = \frac{\rho A L^4 \omega^2}{EI}$ und damit nur für bestimmte Werte von ω , die Eigenfrequenzen ω_i , lösbar. Gesucht ist die ers-

te Eigenfrequenz ω_1 .

Zur Lösung des Problems mit Hilfe finiter Differenzen wird die Brückenlänge in n = 7 gleiche Intervalle der Länge $h = \frac{1}{n}$ unterteilt:

Schreiben Sie die Differentialgleichung für jede Stützstelle $x_i = ih, i = 0(1)7$, an:

 $W_i^{IV} - , i = 0(1)7.$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

Ersetzen Sie die Ableitungen W_i^{IV} durch zentrale Differenzen:

$$-\gamma^4 W_i = 0, i = 0(1)7.$$

Mit der Abkürzung

$$\lambda \coloneqq \gamma^4 h^4 = \frac{\rho A L^4 \omega^2}{n^4 E I}$$

ergibt sich

$$W_{i-2} - 4W_{i-1} + 6W_i - 4W_{i+1} + W_{i+2} - \lambda W_i = 0, i = 0(1)7$$
(1)
d 8 Gleichungen für 12 Unbekannte W_i . Die Punkte -2, -1, 8, 9 wurden eingeführt,

Dies sind 8 Gleichungen für 12 Unbekannte W_i . Die Punkte -2, -1, 8, 9 wurden um die Differenzenformeln auch auf die Ränder anwenden zu können.

Die erste Eigenform ist symmetrisch zur Balkenmitte. Es gilt $W_4 =$, $W_5 =$, $W_6 =$, $W_7 =$ ____, $W_8 =$ ____, $W_9 =$ _____ Damit bleiben _ _ Gleichungen (i = 0(1)3) für _ _ Unbekannte W_j , j = -2(1)3. Die Randbedingungen liefern für i = 0, unter Verwendung zentraler Differenzen: *W*₀ = oder *W*₋₁ = ____. $W_0' =$ Die Unbekannte W_{-2} kann durch Auswerten der Gleichung (1) für i = 0 gefunden werden: $W_{-2} =$. _____ Damit bleiben 3 Gleichungen (i = 1(1)3) für 3 Unbekannte W_1, W_2, W_3 : $\left(\begin{bmatrix} 7 & -4 & 1 \\ --- & --- \\ -\lambda \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ --- & --- \\ -\lambda \end{bmatrix} \cdot \begin{bmatrix} W_1 \\ W_2 \\ W_3 \\ \hat{w} \end{bmatrix} \right)$ $\begin{bmatrix} 0\\ 0 \end{bmatrix}$. Diese sind nur dann nichttrivial lösbar, wenn die Koeffizientenmatrix des Gleichungssystems singulär ist, d.h. wenn λ ein Eigenwert der symmetrischen, positiv definiten Matrix A_2 ist. Der gesuchte, kleinste Eigenwert ist $\lambda_1 = 0.1778264$

und damit die erste Eigenfrequenz

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

$$\omega_1 =$$

Für andere Unterteilungen erhält man folgende Werte für die erste Eigenfrequenz:

n	7	9	11	exakt
$\frac{\omega_1}{\sqrt{\frac{EI}{\rho AL^4}}}$	20.66	21.30	21.64	22.37

Zum Verständnis soll der ANSI/IEEE–Standard auf eine Zahldarstellung mit der Mantissenlänge nm = 2 und der Exponentenlänge ne = 3 übertragen werden.

a) Welche Wortlänge wird für diese Gleitkommazahlen–Darstellung benötigt?

b) Welche Sonderfälle werden durch folgende Bitmuster dargestellt?

c) Geben Sie den Bias und den Bereich der Exponenten für normierte Dualzahlen an:

d) Welche Werte kann die Mantisse annehmen?

e) Tragen Sie alle positiven Maschinenzahlen auf der reellen Zahlenachse ein:

Vorwärtseinsetzen

 $L \cdot X = B$, $L \in \mathbb{R}^{n \times n}$ Linksdreiecksmatrix $X, B \in \mathbb{R}^{n \times q}$

q rechte Seiten

- **Q** Rechenaufwand $\approx q \frac{n^2}{2}$ flops
- für $L_{ii} = 1$ entfällt Division
- auf gleichem Speicherplatz für *X* und *B* durchführbar

Beispiel:

[1	0	[0	$\begin{bmatrix} x_1 \end{bmatrix}$		[3]	
3	1	0	<i>x</i> ₂	=	-4	
2	-2	1	x_3		L 5]	

Rückwärtseinsetzen

 $R \cdot X = B, \quad R \in \mathbb{R}^{n \times n}$ $X, B \in \mathbb{R}^{n \times q}$

Rechtsdreiecksmatrix

$$k = 1(1)q$$

$$i = n(-1)1$$

$$X_{ik} := \frac{1}{R_{ii}} \left(B_{ik} - \sum_{j=i+1}^{n} R_{ij} \cdot X_{jk} \right)$$

q rechte Seiten

• Rechenaufwand
$$\approx q \frac{n^2}{2}$$
 flops

- für $R_{ii} = 1$ entfällt Division
- auf gleichem Speicherplatz für *X* und *B* durchführbar

Beispiel:

[1	2	ן 2		$[x_1]$		[3]
0	-1	-5	•	<i>x</i> ₂	=	-13
0	0	_9]		x_3		L-27]

$$x_{3} = \frac{1}{\frac{1}{1}} = \frac{1}{\frac{1}{1}} = \frac{1}{\frac{1}{1}} \left[-\frac{1}{\frac{1}{1}} \left[-\frac{1}{\frac$$

Cholesky–Zerlegung

 $A = L \cdot L^{T}$, $A = A^{T} > 0$ symmetrisch, positiv definit

Q Rechenaufwand $\approx \frac{n^3}{6}$ flops

- O auf gleichem Speicherplatz durchführbar
- Algorithmus ist gut konditioniert

Beispiel:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 13 & 23 \\ 4 & 23 & 77 \end{bmatrix}$$

Die Cholesky-Zerlegung liefert:

Die Probe ergibt

Gauß-Elimination ohne Pivotsuche

Lösung durch Rückwärtseinsetzen

- Q Rechenaufwand $\approx \frac{n^3}{3} + q \frac{n^2}{2}$ flops
- Gauß–Elimination erfolgt auf gleichem Speicherplatz

Beispiel:

Beispiel: Lösen Sie folgendes Gleichungssystem durch Gauß–Elimination ohne und mit Spaltenpivotsuche sowie durch Rückwärtseinsetzen. Benutzen Sie dabei eine 4–stellige, rundende Dezimalarithmetik.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1.001 & 5 \\ 1 & 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

Durch Rückwärtseinsetzen findet man für die Lösung *x*:

	exakte	ohne Piv	otsuche	mit Pivotsuche		
	Lösung	Lösung	rel. Fehler	Lösung	rel. Fehler	
<i>x</i> ₁	1.00000	1.15	15 %	1	0 %	
<i>x</i> ₂	-0.25006	-0.4	60 %	-0.2501	0.015 %	
<i>x</i> ₃	0.25006	0.2501	0.015 %	0.2501	0.015 %	

Tabelle 1: MatlabR2014b, A7.m

Gauß-Elimination ohne Pivotsuche mit gleichzeitiger LR-Zerlegung

 $A \cdot X = B, \quad A \in \mathbb{R}^{n \times n}$ $X, B \in \mathbb{R}^{n \times q}$

Vorwärts- und Rückwärtseinsetzen Rückwärtseinsetzen

tzen

Beispiel: Führen Sie für die folgende Matrix eine LR–Zerlegung durch. Verwenden Sie dazu die Gauß–Elimination ohne und mit Spaltenpivotsuche.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 2 \\ 3 & 5 & 1 \\ 2 & 6 & 5 \end{bmatrix}$$

Überprüfen Sie Ihr Ergebnis der

Lösen Sie das Gleichungssystem $A \cdot x = b$ für b = [3, -4, 5] auf der Basis der O LR–Zerlegung ohne Pivotsuche:

• LR–Zerlegung mit Spaltenpivotsuche:

Verfahren von Householder

Householder–Transformation

Gesucht ist eine Matrix $H \in \mathbb{R}^{m \times m}$, für die gilt:

- (i) *H* ist orthogonal,
- (ii) $\boldsymbol{H} \cdot \boldsymbol{a} = \mu \boldsymbol{e}_1, \quad \boldsymbol{a} = [a_1, \dots, a_m]^T, \quad \mu \in \mathbb{R}.$

Ansatz:

$$\boldsymbol{H} := \boldsymbol{E} - 2\boldsymbol{u} \cdot \boldsymbol{u}^{T}, \quad \|\boldsymbol{u}\|_{2} = 1;$$

Aus (i): $\boldsymbol{H} \cdot \boldsymbol{H}^T =$

Aus (ii) einerseits:

$$\|\boldsymbol{H}\cdot\boldsymbol{a}\|_{2} = \sqrt{\boldsymbol{a}^{T}\cdot\boldsymbol{H}^{T}\cdot\boldsymbol{H}\cdot\boldsymbol{a}} \equiv \|\boldsymbol{a}\|_{2} \stackrel{!}{=} \sqrt{\mu\cdot\boldsymbol{e}_{1}^{T}\cdot\boldsymbol{e}_{1}\cdot\boldsymbol{\mu}} = |\boldsymbol{\mu}|$$

Aus (ii) andererseits:

$$H \cdot a = \frac{!}{=} \mu e_1$$

$$\rightarrow (2u^T \cdot a) \cdot u = a - \mu e_1 = v$$

$$\rightarrow \boldsymbol{u} = \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|_2}.$$

$$\Rightarrow v = a - \mu e_1 =$$

Damit bleibt:

- 4) $H = E 2u \cdot u^T =$

Transformation eines Vektors $x \in \mathbb{R}^m$:

$$H \cdot x := x - \frac{v^T \cdot x}{\alpha} v$$

Inverse einer Linksdreiecksmatrix

Die Inverse einer Linksdreiecksmatrix (Rechtsdreiecksmatrix) ist selbst wieder eine Linksdreiecksmatrix (Rechtsdreiecksmatrix),

- O auf gleichem Speicherplatz für L und L^{-1} durchführbar
- Rechenaufwand $\approx \frac{n^3}{6}$ flops
- Q für $L_{ii} = 1$ entfällt die Division (LR–Zerlegung)

Beispiel:

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix}$$

i	j	Inverse einer Linksdreiecksmatrix
1	1	$L_{11}^{-1} = $
2	1	$L_{21}^{-1} = \begin{pmatrix} & \cdot & \\ & - & - & - & - \end{pmatrix} = \dots$
	2	$L_{22}^{-1} = $
		$L_{31}^{-1} = \left(\begin{array}{ccc} \cdot & + & \cdot \\ - & - & - & - \\ \end{array} \right) = \left(\begin{array}{ccc} - & - & - \\ - & - & - & - \\ \end{array} \right) = \left(\begin{array}{ccc} - & - & - \\ - & - & - & - \\ \end{array} \right)$
3	1 2 3	$L_{32}^{-1} = \begin{pmatrix} & \cdot & \\ & - & - & - & - \end{pmatrix} = \begin{pmatrix} & \cdot & \\ & - & - & - & - \end{pmatrix} =$
		$L_{33}^{-1} =$

Einfache Vektoriteration

Voraussetzung: $A \in \mathbb{R}^{n \times n}$ hat reelle Eigenwerte $\lambda_i \in \mathbb{R}$ mit $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

dominanter Eigenwert λ_1

- O Nur lineare Konvergenz mit Faktor $\frac{|\lambda_2|}{|\lambda_1|}$
- Algorithmus benötigt nur "Matrix · Vektor" Multiplikation (interessant für große, dünn besetzte Matrizen)
- O Geringe praktische Bedeutung

Beispiel:

$$A = \begin{bmatrix} 4 & -1 & 1 \\ 9 & -8 & 9 \\ 11 & -11 & 12 \end{bmatrix}$$
$$\rightarrow \lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1, T = \begin{bmatrix} \frac{2}{11} & -\frac{1}{11} & 0 \\ \frac{9}{11} & \frac{9}{11} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

S	do	minante	r Eigenve	ktor $\mathbf{z}^{(s)}$	$\lambda_1^{(s)}$	$\lambda_1^{(s)}$	$\frac{\left \lambda_{1}-\lambda_{1}^{(S)}\right }{\left \lambda_{1}-\lambda_{1}^{(S-1)}\right }$
					(Norm)	(Rayleigh)	(Norm)
0	1.00000	.00000	.00000				
1							
2	.23377	.81818	1.00000	7.0000000	6.8165138	.333	
3	.20047	.81818	1.00000	5.5714286	5.5462727	.286	
4	.18898	.81818	1.00000	5.2051282	5.1981197	.359	
5	.18464	.81818	1.00000	5.0788177	5.0763727	.384	
6	.18294	.81818	1.00000	5.0310378	5.0301108	.3942	
7	.18227	.81818	1.00000	5.0123385	5.0119755	.398	
8	.18200	.81818	1.00000	5.0049233	5.0047793	.399	
9	.18189	.81818	1.00000	5.0019674	5.0019100	.400	
10	.18185	.81818	1.00000	5.0007866	5.0007637	.400	
11	.18183	.81818	1.00000	5.0003146	5.0003054	.400	
12	.18182	.81818	1.00000	5.0001258	5.0001222	.400	
13	.18182	.81818	1.00000	5.0000503	5.0000489	.400	
14	.18182	.81818	1.00000	5.0000201	5.0000195	.400	
15	.18182	.81818	1.00000	5.0000081	5.0000078	.400	
16	.18182	.81818	1.00000	5.0000032	5.0000031	.400	
17	.18182	.81818	1.00000	5.0000013	5.0000013	.400	
18	.18182	.81818	1.00000	5.0000005	5.0000005	.400	
19	.18182	.81818	1.00000	5.0000002	5.0000002	.400	
20	.18182	.81818	1.00000	5.0000001	5.0000001	.400	

Orthogonale Iteration

Voraussetzung: $A \in \mathbb{R}^{n \times n}$ hat reelle Eigenwerte $\lambda_i \in \mathbb{R}$ mit $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

Eigenwerte λ_i , i = 1(1)n

Beispiel:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 & 1 \\ 9 & -8 & 9 \\ 11 & -11 & 12 \end{bmatrix} \rightarrow \lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1$$

Die Iteration liefert folgende Ergebnisse für Q und R:

$$\boldsymbol{R}^{(1)} = \begin{bmatrix} -14.77 & 13.34 & -14.70 \\ 0 & 2.82 & -3.15 \\ 0 & 0 & -.24 \end{bmatrix} \qquad \boldsymbol{Q}^{(1)} = \begin{bmatrix} -.271 & .926 & .264 \\ -.610 & .047 & -.791 \\ -.745 & -.375 & -.552 \end{bmatrix}$$
$$\boldsymbol{R}^{(2)} = \begin{bmatrix} 6.84 & -7.34 & -22.82 \\ 0 & 2.02 & -1.81 \\ 0 & 0 & -.72 \end{bmatrix} \qquad \boldsymbol{Q}^{(2)} = \begin{bmatrix} -.178 & .974 & .134 \\ -.623 & -.667 & -.782 \\ -.762 & -.222 & .609 \end{bmatrix}$$

	[5.55	-11.05	-21.68]	[153	.986	. 066]
$R^{(3)} =$	0	2.02	-1.48	$Q^{(3)} =626$	045	779
	LΟ	0	89]	L—.765	161	. 623]
	[5.20	-12.63	–20.89	[145	. 989	ן 033 ן
$R^{(4)} =$	0	2.02	-1.40	$Q^{(4)} = 627 $	066	777
	LΟ	0	—.95 J	l—.766	133	. 629]
				:		

Zusammenfassend erhält man für die Eigenwerte:

S	$\lambda_1^{(s)}$	$\lambda_2^{(s)}$	$\lambda_3^{(s)}$	$\frac{\left \lambda_{1}-\lambda_{1}^{(s)}\right }{\left \lambda_{1}-\lambda_{1}^{(s-1)}\right } \overline{\left \lambda_{1}-\lambda_{1}^{(s-1)}\right }$	$\frac{\lambda_2 - \lambda_2^{(s)}}{\lambda_2 - \lambda_2^{(s-1)}}$	$\frac{\left \lambda_{3}-\lambda_{3}^{(s)}\right }{\left \lambda_{3}-\lambda_{3}^{(s-1)}\right }$
1						
Ţ						
2						
3						
4						
5	5.0764003	2.0168666	.9767130			
6	5.0301150	2.0110895	.9885319	.394	<u> </u>	.492
7	5.0119762	2.0066557	.9943016	.398	.600	.497
8	5.0047794	2.0037843	.9971582	.399	.569	.499
9	5.0019100	2.0020779	.9985807	.400	.549	.499
10	5.0007637	2.0011140	.9992907	.400	.536	.500
11	5.0003054	2.0005872	.9996454	.400	.527	.500
12	5.0001222	2.0003057	.9998227	.400	.521	.500
13	5.0000489	2.0001577	.9999114	.400	.516	.500
14	5.0000195	2.0000808	.9999557	.400	.512	.500
15	5.0000078	2.0000412	.9999778	.400	.510	.500
16	5.0000031	2.0000209	.9999889	.400	.508	.500
17	5.0000013	2.0000106	.9999945	.400	.506	.500
18	5.0000005	2.0000053	.9999972	.400	.505	.500
19	5.0000002	2.0000027	.9999986	.400	.504	.500
20	5.0000001	2.0000014	.9999993	.400	.503	.500

QR–Verfahren

Voraussetzung: $A \in \mathbb{R}^{n \times n}$ hat reelle Eigenwerte $\lambda_i \in \mathbb{R}$ mit $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

alle Eigenwerte

Beispiel:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 & 1 \\ 9 & -8 & 9 \\ 11 & -11 & 12 \end{bmatrix} \rightarrow \lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1$$

Die Iteration liefe				
			$ \mathbf{A}_{21}^{(s)} $	
			$\frac{1}{ A^{(s-1)} }$	
	A (S)		121	
	$A^{(3)}$			
			$A_{31}^{(s)}$	$A_{32}^{(s)}$
			$A_{31}^{(s-1)}$	$A_{32}^{(s-1)}$
Iterationsschri	tt: 0			
4.0000	-1.0000	1.0000		
9.0000	-8.0000	9.0000		
11.000	-11.000	12.000		
Iterationsschri	tt: 1			
6.8165	-7.5262	-22.559		
.62700	1.3157	-3.9737	.070	
.17865	.89967E-01	13226	.016	.008
	-			
Iterationsschri	tt: 2			
5.5463	-11.099	21.637		
.13775	1.7379	2.0749	.220	1 1 0 0
1886/E-01	1010/	./1581	.106	1.123
Iterationsschri	tt: 3			
5.1981	-12.651	-20.877		
.45069E-01	1.9107	-1.6144	.327	
.30379E-02	.61385E-01	.89118	.161	.607
Tterationsschri	++• <i>1</i>			
5 0764	-13 382	20 450		
16707E-01	1 9726	1 4698	371	
- 55612E-03	- 32373E-01	95108	183	527
Iterationsschri	tt: 5			
5.0301	-13.734	-20.227		
.64859E-02	1.9933	-1.4199	.388	
.10700E-03	.16387E-01	.97658	.192	.506
Iterationsschri	tt: 6			
5.0120	-13.905	20.114		
.25636E-02	1.9995	1.4023	.395	
21028E-04	81985E-02	.98850	.197	.500
Iterationsschri	tt: /			
5.0048 10206m 02	-13.989	-20.058	200	
.10206E-02	2.0009	-1.3962	. 390	100
.41/105-03	.409136-02	• JJ42 J	.190	· ユンン
Iterationsschri	tt: 8			
5.0019	-14.031	20.029		
.40746E-03	2.0009	1.3941	.399	
83116E-06	20418E-02	.99716	.199	.499

Iterationsschrit	t: 9			
5.0008	-14.051	-20.015		
.16286E-03	2.0007	-1.3935	.400	
.16593E-06	.10195E-02	.99858	.200	.499
Iterationsschrit	··· 10			
5 0003	-14 062	20 008		
65124F-04	2 0004	1 3934	400	
- 33158E-07	- 50936E-03	99929	200	500
		• 5 5 5 2 5	• 2 0 0	.000
Iterationsschrit	t: 11			
5.0001	-14.067	-20.005		
.26046E-04	2.0002	-1.3934	.400	
.66288E-08	.25456E-03	.99965	.200	.500
Ttorationcochrit	-+• 10			
	-14 069	20 003		
104198-04	2 0001	1 2021	400	
.10410E-04	2.0001	1.5954	.400	500
13233E-08	12725E-05	.99902	.200	.500
Iterationsschrit	t: 13			
5.0000	-14.071	-20.002		
.41671E-05	2.0001	-1.3934	.400	
.26507E-09	.63615E-04	.99991	.200	.500
Ttorationcochrit	-+• 1 <i>1</i>			
	_14 071	20 001		
16669E-05	-14.071	1 2024	400	
.I0000E-0J	2.0000	1.5954	.400	E 0 0
55012E-10	31803E-04	.99990	.200	.500
Iterationsschrit	t: 15			
5.0000	-14.072	-20.001		
.66673E-06	2.0000	-1.3935	.400	
.10602E-10	.15902E-04	.99998	.200	.500

Aus dem 15. Iterationsschritt erhält man folgende Näherungswerte für die Eigenwerte:

 $\lambda_1 \approx$, $\lambda_2 \approx$, $\lambda_3 \approx$.

QR–Verfahren mit Shift– und Deflationstechnik

Beispiel:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 & 1 \\ 9 & -8 & 9 \\ 11 & -11 & 12 \end{bmatrix} \rightarrow \lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1$$

Bestimmen Sie mit Hilfe der verbesserten Shiftstrategie einen geeigneten Shiftparameter für den ersten Iterationsschritt:

Die Iteration liefert folgende Ergebnisse:

Iterationsschrit	t: 0	
4.0000	-1.0000	1.0000
9.0000	-8.0000	9.0000
11.000	-11.000	12.000
Iterationsschrit	:t: 1	
Ordnung: 3	Shift:	3.00000
4.0099	-20.831	13.039
80278E-02	1.0065	11391
.13980	11391	2.9836
Iterationsschrit	t: 2	
Ordnung: 3	Shift:	2.99015
5,9253	-22.710	8.3369
-21538	23204	1.8638
15100	- 86378	2 3067
. 10100	• • • • • • •	2.0007
Iterationsschrit	t: 3	
Ordnung: 3	Shift:	1.07467
5.1787	-16.462	-18.032
.40157E-01	1.5998	-1.7251
51559E-02	77010E-01	1.2215
Iterationsschrit	t: 4	
Ordnung: 3	Shift:	1.00000
5.0429	-14.063	19.997
.92735E-02	1.9571	1.4544
.51366E-18	.53017E-16	1.0000
Iterationsschrit	t: 5	
Ordnung: 2	Shift:	2.00000
5.0000	14.072	19.997
.25376E-18	2.0000	1.4544
51266E 10	530170-16	1 0000

Damit erhält man folgende Näherungswerte für die Eigenwerte:

 $\lambda_1 \approx , \lambda_2 \approx , \lambda_3 \approx .$

Inverse Vektoriteration

Voraussetzung: $A \in \mathbb{R}^{n \times n}$ hat reelle Eigenwerte $\lambda_i \in \mathbb{R}$ mit $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$

zum Shift σ nächstgelegener Eigenwert λ_k und Eigenvektor $\underline{x}_k = \underline{z}$

Beispiel:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -1 & 1 \\ 9 & -8 & 9 \\ 11 & -11 & 12 \end{bmatrix} \rightarrow \lambda_1 = 5, \lambda_2 = 2, \lambda_3 = 1, \quad \boldsymbol{T} = \begin{bmatrix} \frac{2}{11} & -\frac{1}{11} & 0 \\ \frac{9}{11} & \frac{9}{11} & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

a) Bestimmung des 1. Eigenvektors:

Shift:
$$\sigma \coloneqq 5.1$$
 $A - \sigma E = \begin{bmatrix} --- & --- & --- \\ --- & --- & --- \\ --- & --- & --- \end{bmatrix}$
LR-Zerlegung: $L = \begin{bmatrix} 1 & 0 & 0 \\ 0.818 & 1 & 0 \\ -0.1 & 0.512 & 11 \\ R = \begin{bmatrix} 1 & -11 & 6.9 \\ 0 & -4.1 & 3.35 \\ 0 & 0 & -0.028 \end{bmatrix}$
 $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -4.1 & 3.35 \\ 0 & 0 & -0.028 \end{bmatrix}$
 $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
Iteration:
Startvektor: $z^{(0)} \coloneqq \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
Abbildung: $\begin{bmatrix} --- & --- \\ -- & --- \\ --- & --- \end{bmatrix} \cdot \begin{bmatrix} u_{11}^{(1)} \\ u_{21}^{(1)} \\ u_{31}^{(1)} \end{bmatrix} = \begin{bmatrix} --- \\ --- \\ --- \\ --- \end{bmatrix} \rightarrow u^{(1)} = \begin{bmatrix} --- \\ --- \\ --- \\ --- \\ --- \end{bmatrix}$

Die weitere Iteration liefert:

S	E	igenvektor	$\mathbf{z}^{(s)}$	$\lambda_1^{(s)}$
0	1.0000	.00000	.00000	
1	.19091	.81818	1.00000	5.0718182
2	.18210	.81818	1.00000	5.0031250
3	.18183	.81818	1.00000	5.0001007
4	.18182	.81818	1.00000	5.000032
5	.18182	.81818	1.00000	5.000001
6	.18182	.81818	1.00000	5.000000

b) Bestimmung des 2. Eigenvektors:

Shift: $\sigma \coloneqq 2.0001$

S	E	$\lambda_2^{(s)}$		
0	1.0000	.00000	.00000	
1	09090	.81818	1.00000	2.0001273
2	09091	.81818	1.00000	2.000000

c) Bestimmung des 3. Eigenvektors:

Shift: $\sigma \coloneqq 1.0001$

S	E	igenvektor z	.(s)	$\lambda_3^{(s)}$
0	1.0000	.00000	.00000	
1	18181	.81818	1.00000	.6365091
2	10909	.81818	1.00000	1.8000317
3	09556	.81756	1.00000	1.9556243
4	00267	.99472	1.00000	1.0287075
5	.00000	1.00000	1.00000	.9999970
6	.00000	1.00000	1.00000	1.000000

Einschrittverfahren 2. Ordnung

Die Integrationsvorschrift eines Einschrittverfahrens lautet

$$\eta_{i+1} = \eta_i + , (1)$$

wobei sich die Verfahrensfunktion $\phi(t_i, \eta_i, h)$ durch Vergleich mit der Taylor–Reihe

$$\bar{x}(t_i + h) = \eta_i + h \left[f + \frac{h}{2} (f_t + f_x f) + \cdots \right]_{t_i, \eta_i}$$
(2)

ergibt.

Als Ansatz für ein explizites Runge-Kutta-Verfahren 2. Ordnung wählt man

$$\phi(t, x, h) = b_1 f^{(1)} + b_2 f^{(2)},$$

$$f^{(1)} = f(t, x),$$

$$f^{(2)} = f(t + c_2 h, x + a_{21} h f^{(1)}).$$
(3)

mit

Durch Entwicklung der Hilfssteigungen
$$f^{(1)}$$
 und $f^{(2)}$ in Taylor–Reihen nach h findet man bei Abbruch nach dem linearen Glied

$$f^{(1)} = ,$$

$$f^{(2)} = + \dots$$

Eingesetzt in den Ansatz (3) ergibt sich

 $\phi(t, x, h) = f + hf_t + hf_x f$

und durch Vergleich mit der Taylor-Reihe (2) das Gleichungssystem

Mögliche Lösungen sind (dargestellt im BUTCHER-Block):

Verfahren von HEUN (1900):

 $\rightarrow \phi(t, x, h) =$

Konstruieren Sie einen Integrationsschritt:

Verfahren von COLLATZ (1960):

0	0	0
1/2	1/2	0
	0	1

$$\rightarrow \phi(t, x, h) =$$

Konstruieren Sie einen Integrationsschritt:

Runge-Kutta-Verfahren 4. Ordnung

 $\underline{\mathbf{x}}(t), t \in \{t_0, t_0 + h, t_0 + 2h, ..., t_{end}\}$

Stabilitätsgebiete von Einschrittverfahren

Für eine numerisch stabile Integration wird ein Abklingen der Fehlerbeiträge gefordert:

$$\frac{|\delta_{i+1}|}{|\delta_i|} \stackrel{!}{\leq} 1 \tag{1}$$

Bei Einschrittverfahren gilt dabei für die Fehlerfortpflanzung

$$\delta_{i+1} = \delta_i + h[\phi(t_i, \eta_i, h) - \phi(t_i, x_i, h)]$$
⁽²⁾

mit

$$\delta_i = \eta_i - x_i \tag{3}$$

Die Stabilität der numerischen Integration ist vom dynamischen Verhalten des zu untersuchenden Systems abhängig. Zur Untersuchung wird das skalare Referenzproblem

$$\dot{x} = \lambda x, \quad x(t_0) = x_0, \lambda \in \mathbb{C}$$
 (4)

verwendet.

Das Stabilitätsverhalten des Polygonzugverfahrens ('Euler vorwärts') soll untersucht werden.

a) Wie lautet die Verfahrensfunktion des Polygonzugverfahrens?

b) Setzen Sie die Verfahrensfunktion (5) in (2) für die Stützstellen $\phi(t_i, \eta_i, h)$ und $\phi(t_i, x_i, h)$ ein:

 $\delta_{i+1} = \delta_i + \dots \tag{6}$

c) Setzen Sie nun das skalare Referenzproblem (4) in (6) ein und beachten Sie (3). Welcher Zusammenhang ergibt sich für die Fehlerfortpflanzung?

d) Welche Stabilitätsaussage leitet sich daraus mit (1) ab?

$$\frac{|\delta_{i+1}|}{|\delta_i|} = --- < 1.$$
(7)

Gleichung (7) beschreibt eine Abhängigkeit der maximal zulässigen Schrittweite h von der Systemdynamik λ . Dieser Zusammenhang kann in der komplexen λh –Ebene übersichtlich dargestellt werden.

e) Berechnen Sie die Linie der Grenzstabilität mit

$$\frac{|\delta_{i+1}|}{|\delta_i|} = 1,$$

indem Sie eine komplexe Betragsbildung mit $|x + iy| = \sqrt{x^2 + y^2}$ durchführen. Welcher Zusammenhang ergibt sich?

f) Tragen Sie das Stabilitätsgebiet in die komplexe λh -Ebene ein

Stabilitätsgebiete der wichtigsten Einschrittverfahren

Integrationsfehler

Gesamtfehler:

$$\Delta x(t,h) = r(t,h) + e(t,h)$$

Rundungsfehler ~ $\frac{1}{h}$ globaler Diskretisierungsfehler ~ h^p

Beispiel:

$$\dot{x} = -200tx^2, \quad x(-1) = \frac{1}{101}$$

exakte Lösung:
 $x(t) = \frac{1}{1+100t^2}$
Probe:
 $\dot{x}(-1) = \frac{1}{1+100t^2}$
 $\dot{x}(t) = \frac{1}{1+100t^2}$

Fehlberg–Schrittweitensteuerung

gegeben: Schrittweiten–Vorschlag $h = h_0$ Fehlertoleranz δ

Beispiel: (vgl. A20):

$$\dot{x} = -200tx^2$$
, $x(-3) = \frac{1}{901}$

numerische Lösung: Runge–Kutta Verfahren 5/4. Ordnung (DOUBLE)

	Funktionsauswertungen	Fehler in $x(0)$
Fehlberg–Schrittw.steuerung ($h_0 = 5.E - 2$, EPS = 1.E - 7)	427	6.4504E – 6
$h = h_{\rm mittel} = 4.2155E - 2$	427	1.3939E – 4
$h = h_{\max} = 1.44244E - 1$	127	1.92075E — 1
$h = h_{\min} = 1.05495E - 2$	1711	3.05471E – 7

Rekursiver Aufbau eines Extrapolationspolynoms *k*-ter Ordnung nach dem Aitken-Neville Schema

Definition:	$P_{j,l}(h)$ $P_{k,k}(h)$	Polynom <i>l</i> -ter Ordnung mit den Stützstellen $P_{j,l}(h_{j-i}) = \eta^{(j-i)}, i = 0(1)l.$ speziell: $P_{j,0} \equiv \eta^{(j)}, j = 0(1)k$ gesuchtes Interpolationspolynom <i>k</i> -ter Ordr	nung
Rekursion:	$P_{j,l}(h)$ und Stützstelle $\rightarrow P_1$ hat die gle	d $P_{j-1,l}(h)$ sind Polynome <i>l</i> -ter Ordnung mit <i>l</i> en h_{j-1}, \ldots, h_{j-l} $P_{\gamma}(h) \coloneqq \gamma P_{j,l}(h) + (1 - \gamma)P_{j-1,l}(h), \gamma \in \mathbb{R},$ eichen Stützstellen	gemeinsamen
	speziell:	$\gamma \coloneqq \frac{h - h_{j-l-1}}{h_j - h_{j-l-1}} \rightarrow \gamma = 0 \text{ für } h = h_{j-l-1}$ $\gamma = 1 \text{ für } h = h_j$	
	$\rightarrow P_{\gamma}(h) \equiv$	$\equiv P_{j,l+1}(h) = \frac{\left(h - h_{j-l-1}\right)P_{j,l}(h) + \left(h_j - h\right)P_{j-1,l}}{h_j - h_{j-l-1}}$ $= P_{j,l}(h) + \frac{h_j - h}{h_{j-l-1} - h_j}(P_{j,l}(h) - P_{j-1})$	$\frac{l(h)}{l,l(h)}$
η η $\eta^{(0)}$		$h_0: P_{0,0}$	
$\eta^{(1)}$	φ 	$h_1: P_{1,0}$ $h_2: P_{2,0}$ \vdots h_1	$P_{1,1}$ $P_{2,1} \rightarrow P_{2,2}$ $\vdots \qquad \vdots$

Mehrschrittverfahren mit konstanter Schrittweite

Integrationsformel:

$$\eta_{p+k} = \eta_{p-j} = h \sum_{\substack{i=0\\ i=0}}^{q} \beta_{qi} f_{p-i}$$
$$f_{p-i} = f(t_{p-i}, \eta_{p-i}), \quad \beta_{qi} = \int_{-j}^{k} \prod_{\substack{l=0\\ l\neq i}}^{q} \frac{s+l}{l-i} ds, \quad i = 0(1)q$$

Adams–Bashforth Prädiktor–Verfahren (k = 1, j = 0) **Beispiel:** q = 2

$$\beta_{20} = \int_{--}^{--} \left(\frac{s + \frac{1}{2}}{1 - \frac{1}{2}} \right) \left(\frac{s + \frac{1}{2}}{1 - \frac{1}{2}} \right) ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{3s^2}{2} + 2s \right]_{0}^{1} = \frac{1}{2} \left[\frac{s^3}{3} + \frac{3s^2}{2} + 2s \right]_{0}^{1} = \frac{1}{2} \left[\frac{s + \frac{1}{2}}{1 - \frac{1}{2}} \right] ds = -\left[\frac{s^3}{3} + s^2 \right]_{0}^{1} = \frac{1}{2} \left[\frac{s^3}{3} + s^2 \right]_{0}^{1} = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{0}^{1} = \frac{1}{2} \left[\frac{s^3}{3} + \frac$$

all gemein: $\eta_{p+1} = \eta_p + h \sum_{i=0}^{q} \beta_{qi} f_{p-i}$

Verfahrens-	q				i		
ordnung			0	1	2	3	4
1	0	β_{0i}	1				
2	1	$2\beta_{1i}$	3	-1			
3	2	$12\beta_{2i}$					
4	3	24β _{3i}	55	-59	37	-9	
5	4	$720\beta_{4i}$	1901	-2774	2616	-1274	251

Adams–Moulton Korrektor–Verfahren (k = 0, j = 1) Beispiel: q = 2

$$\beta_{20} = \int_{--}^{--} \left(\frac{s+}{--} \right) \left(\frac{s+}{--} \right) ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{3s^2}{2} + 2s \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s^3}{3} + \frac{3s^2}{2} + 2s \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = -\left[\frac{s^3}{3} + s^2 \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = -\left[\frac{s^3}{3} + s^2 \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[\frac{s^3}{3} + \frac{s^2}{2} \right]_{-1}^{0} = \frac{1}{2} \left[\frac{s+}{--} \right] ds = \frac{1}{2} \left[$$

allgemein: $\eta_p = \eta_{p-1} + h \sum_{i=0}^{q} \beta_{qi} f_{p-i}$

bzw. nach Umbenennung des Index $p \rightarrow p + 1$: $\eta_{p+1} = \eta_p + h \sum_{i=0}^{q} \beta_{qi} f_{p+1-i}$

Verfahrens-	q				i		
ordnung			0	1	2	3	4
1	0	β_{0i}	1				
2	1	$2\beta_{1i}$	1	1			
3	2	$12\beta_{2i}$					
4	3	$24\beta_{3i}$	9	19	-5	1	
5	4	$720\beta_{4i}$	251	646	-264	106	-19

O Nyström Prädiktor–Verfahren (k = 1, j = 1) speziell: midpoint–rule (q = 0): $\eta_{p+1} = \eta_{p-1} + 2hf_p$

O Milne Korrektor–Verfahren (k = 0, j = 2)

PECE-Verfahren (Predict-Evaluate-Correct-Evaluate)

Stabilitätsgebiete der wichtigsten Mehrschrittverfahren

AM: Adams Moulton methods

BDF: Backward differentiation formula