Dieses Bild zeigt Jonas Kneifl

Jonas Kneifl

Herr M.Sc.

Institut für Technische und Numerische Mechanik (ITM)

Kontakt

+49 711 685 66414
+4971168566400

Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Raum: 3.101

Fachgebiet

  1. 2022

    1. J. Nicodemus, J. Kneifl, J. Fehr, und B. Unger, „Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators“, IFAC-PapersOnLine, Bd. 55, Nr. 20, Art. Nr. 20, 2022, doi: 10.1016/j.ifacol.2022.09.117.
    2. J. Kneifl, J. Hay, und J. Fehr, „Real-time Human Response Prediction Using a Non-intrusive Data-driven Model Reduction Scheme“, IFAC-PapersOnLine, Bd. 55, Nr. 20, Art. Nr. 20, 2022, doi: 10.1016/j.ifacol.2022.09.109.
  2. 2021

    1. J. Kneifl, D. Grunert, und J. Fehr, „A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning“, International Journal for Numerical Methods in Engineering, Apr. 2021, doi: 10.1002/nme.6712.
    2. J. Kneifl und J. Fehr, „Machine Learning Algorithms for Learning Nonlinear Terms of Reduced Mechanical Models in Explicit Structural Dynamics“, PAMM, Bd. 20, Nr. S1, Art. Nr. S1, März 2021, doi: 10.1002/pamm.202000353.

20. Oktober 2020: Virtual talk at the 6th GAMM AG DATA Workshop; "Machine Learning Algorithms for Learning Nonlinear Terms of Reduced Mechanical Models in Explicit Structural Dynamics"

12. Januar 2022: Virtual talk at the ML Session on “Data Spotlight: Data-driven methods for engineering applications": "Data-driven Model Reduction
for Structural Dynamical Problems"

27. Juli 2022: 10th Vienna International Conference on Mathematical Modelling, Wien, Österreich: „Real-time Human Response Prediction Using a Non-intrusive Data-driven Model Reduction Scheme”

07. Dezember 2022: MOR-Day, Stuttgart: „Real-time Human Response Prediction Using a Non-intrusive Data-driven Model Reduction Scheme”

Kneifl, Jonas; Fehr, Jörg, 2020, "Deformation of a Structural Frame of a Racing Kart Colliding against a Rigid Wall", https://doi.org/10.18419/darus-1150, DaRUS, V1

Kneifl, Jonas; Hay, Julian; Fehr, Jörg, 2022, "Human Occupant Motion in Pre-Crash Scenario", https://doi.org/10.18419/darus-2471, DaRUS, V1

"Investigation of the suitability of surrogate models for predicting human-seat interaction with varying seat position using human body models", Studienarbeit. Institut für Technische und Numerische Mechanik, Universität Stuttgart, Ongoing. Betreuung gemeinsam mit Fabian Kempter, M.Sc.

"Collision detection of a motorcycle in accident scenarios using machine learning algorithms", Masterarbeit. Institut für Technische und Numerische Mechanik, Universität Stuttgart, Laufend. Betreuung gemeinsam mit Steffen Maier, M.Sc.

"Discovering Friction Models from Experimental Data using Physics-informed Neural Networks", Forschungsmodul. Institut für Parallele und Verteilte Systeme / Institut für Technische und Numerische Mechanik, Universität Stuttgart, Laufend.

"Application of Linear Model Order Reduction Methods to Accelerate Nonlinear Crash Simulations", Studienarbeit. Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2022.

"Matrixapproximation mittels CUR Zerlegung", Sonstige Arbeit SA-34. Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2021.

"Application of Physics Informed Neural Networks for the Approximation of Differential Equations in the Field of Rigid Body Dynamics", Masterarbeit MSC-316. Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2021.

"Untersuchung der Eignung von Ersatzmodellen zur Analyse des Haltungseinflusses bei Heckaufprallevents anhand eines Hals-Nackenmodells", Studienarbeit STUD-510. Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2021. Betreuung gemeinsam mit Fabian Kempter,M.Sc.

Zum Seitenanfang