Project description
For many applications in elastic multibody dynamics, the mass-, stiffness-, and input matrix of the elastic bodies have to be modelled parametrically in order to obtain meaningful models. Classical model order reduction methods cannot be applied for such kind of problems since they do not preserve the parameter dependency in the reduced models. Therefore, the aim of this research project is the development and the investigation of parameric model order reduction methods which preserve the parameter dependency in the reduced order model explicitly. In the following some applications of parametric model order reduction will be presented.
Shape optimzation of a cantilever beam.
Structural Optimization with Reduced Order Models
The increasing demand for energy and resources efficient technical products makes the use of lightweight structures necessary. Usually, the Finite-Element-Method is used for modelling complex components. Afterwards these models can be used for optimization to achieve the desired weight reduction. However, the numerical effort for solving these optimization problems may become tremendous for fine discretized models making the optimization problems unsolvable in acceptable computation times. The goal of this research project is therefore the development of methods for parametric model order reduction for structural and shape optimization problems to enable efficient solutions to these kinds of problems.
Promotion
The research project is granted by the German Research Foundation (German: Deutsche Forschungsgemeinschaft):
- Sonderforschungsbereich 1244 at the University of Stuttgart: "Adaptive Hüllen und Strukturen für die gebaute Umwelt von morgen"
Contacts
Peter Eberhard
Prof. Dr.-Ing. Prof. E.h.- Profile page
- +49 711 685 66388
- Write e-mail
- Pfaffenwaldring 9, 70569 D-Stuttgart