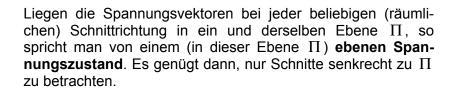


Der ebene Spannungszustand (Mohrscher Spannungskreis)

Zur Untersuchung des Spannungszustands in einem Körper K betrachtet man einen beliebigen Punkt P.

Legt man einen Schnitt durch P, so ergibt sich an der Schnittebene, deren räumliche Ausrichtung durch ihren nach außen weisenden Normaleneinheitsvektor \mathbf{n} festgelegt wird, ein Spannungsvektor \mathbf{p} . Dieser hängt von der Schnittrichtung ab.

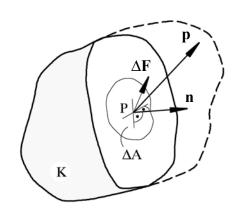
Ist ΔA eine den Punkt P enthaltende Fläche in der Schnittebene und ΔF die an ΔA angreifende resultierende Kraft, so ist der Spannungsvektor als $~p = \lim_{\Delta A \rightarrow 0} \frac{\Delta F}{\Delta A}~$ definiert.

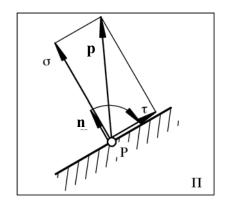


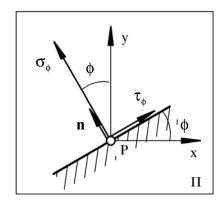
Der Mohrsche Spannungskreis beschreibt in diesem Fall die Abhängigkeit des Spannungsvektors \mathbf{p} von der Schnittrichtung bei festgehaltenem Punkt P. Der Spannungsvektor \mathbf{p} wird dazu in zwei Richtungen normal und tangential zur Schnittrichtung zerlegt. Das ergibt die Normalspannung σ und die Schubspannung τ . Die Normalspannung σ ist **in Richtung von n** (also nach außen) positiv definiert. Die positive Richtung der Schubspannung τ ergibt sich durch **Drehung von n im Uhrzeigersinn** um 90° .

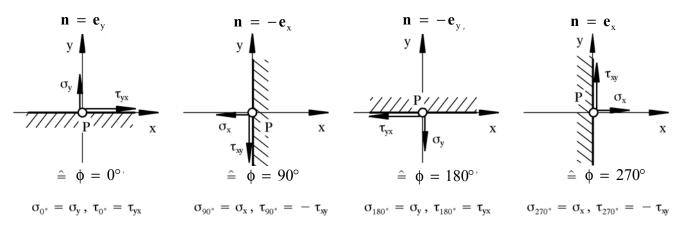
Die Schnittrichtung wird mit Hilfe eines Winkels ϕ und eines kartesischen (x,y)-Koordinatensystems in Π mit Ursprung in P angegeben. Dabei ist ϕ derjenige Winkel, um den der Normalenvektor $\mathbf n$ gegenüber der positiven y-Achse im $\mathbf mathematisch$ positiven Sinn (= gegen den Uhrzeiger) gedreht ist. Die Spannungen an der Schnittfläche mit dem Winkel ϕ heißen σ_{ϕ} und τ_{ϕ} .

Für Schnittrichtungen parallel zu den Koordinatenachsen verwendet man auch die Bezeichnungen σ_x , τ_{xy} , σ_y , τ_{yx} . Der erste Index gibt dabei jeweils die Richtung von \boldsymbol{n} , der zweite die Richtung der Spannung selber an. Dabei gelten folgende Vorzeichenregelungen und Zusammenhänge mit den bisherigen Bezeichnungen $\sigma_{_{\!\varphi}}$, $\tau_{_{\!\varphi}}$. (Gezeichnet sind jeweils die positiven Richtungen der Spannungen σ_x , τ_{xy} , σ_y und τ_{yx})





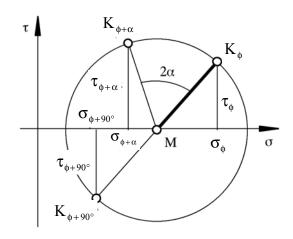




Es gilt stets $\tau_{vx} = \tau_{xy}$ (Satz von der Gleichheit einander zugeordneter Schubspannungen).

Sind bei einem ebenen Spannungszustand die zu zwei verschiedenen Schnittrichtungen gehörenden Spannungen bekannt, so ist der ganze Spannungszustand in P eindeutig bestimmt.

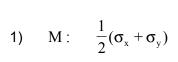
Trägt man in einem (σ,τ) -Koordinatensystem die zu beliebigen Winkeln ϕ gehörenden Punkte $K_{\phi}(\sigma_{\phi},\tau_{\phi})$ ein, so liegen diese Punkte alle auf einem Kreis mit dem Mittelpunkt M auf der σ -Achse, dem sogenannten **Mohrschen Spannungskreis**.

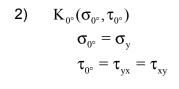


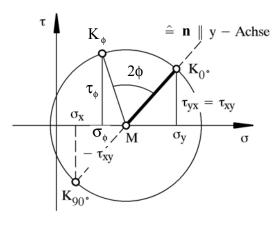
Kennt man diesen Kreis und die Spannungen σ_{ϕ} , τ_{ϕ} zu einem Schnittwinkel ϕ , so erhält man die zum Schnittwinkel $\phi + \alpha$ gehörenden Spannungen $\sigma_{\phi + \alpha}$, $\tau_{\phi + \alpha}$, indem man K_{ϕ} um M um den Winkel 2α gegen den Uhrzeiger dreht, also gleichsinnig mit der Drehung der Schnittnormalen. Daher liegen je zwei zu aufeinander senkrechten Schnittrichtungen gehörende Punkte K_{ϕ} ,

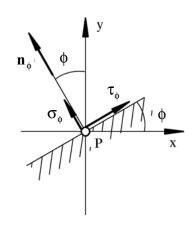
 $K_{_{\varphi^+90^\circ}}$ auf einem Kreisdurchmesser. Umgekehrt läßt sich der Kreismittelpunkt zum Beispiel als arithmetisches Mittel zweier zu aufeinander senkrechten Schnittrichtungen gehörenden Normalspannungen $\sigma_{_{\varphi}}$, $\sigma_{_{\varphi^+90^\circ}}$ konstruieren.

Oft sind in einem Punkt P die Spannungen σ_x , σ_y , $\tau_{xy} = \tau_{yx}$ bekannt. Man konstruiert dann den Mohrschen Spannungskreis folgendermaßen:

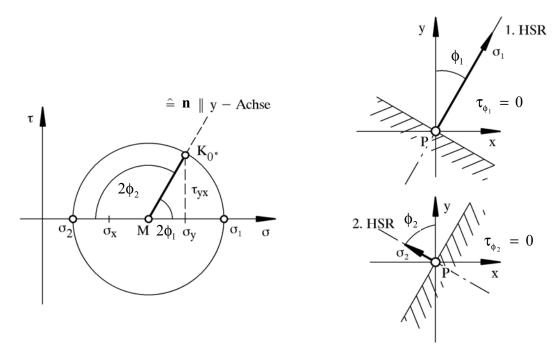








Eine ausgezeichnete Rolle spielen die Schnittpunkte des Kreises mit der σ -Achse. Dort verschwinden die Schubspannungen. Die Normalspannungen an den zugehörigen Schnittebenen heißen **Hauptspannungen** σ_1 und σ_2 . Dabei ist σ_1 als die größere von beiden definiert. Die zugehörigen Schnittrichtungen heißen **Hauptspannungsrichtungen** (HSR). Sie stehen aufeinander senkrecht und werden durch die Winkel ϕ_1 , ϕ_2 festgelegt.



Für die analytische Beschreibung der hier beschriebenen Zusammenhänge siehe Magnus/Müller, 3.1.1.1 .