# Bachelorprüfung in Technische Mechanik I

| Nachname, Vorna                    | me           |  |
|------------------------------------|--------------|--|
|                                    |              |  |
| E-Mail-Adresse (Angabe freiwillig) |              |  |
|                                    |              |  |
| MatrNummer                         | Fachrichtung |  |
|                                    |              |  |

- 1. Die Prüfung umfasst 6 Aufgaben auf 7 Blättern.
- 2. Nur vorgelegte Fragen beantworten, keine Zwischenrechnungen eintragen.
- 3. Alle Ergebnisse sind grundsätzlich in den gegebenen Größen auszudrücken.
- 4. Die Blätter der Prüfung dürfen nicht getrennt werden.
- Als Hilfsmittel sind ausschließlich 6 Seiten Formelsammlung (entspricht 3 Blättern DIN-A4 doppelseitig) zugelassen. Elektronische Geräte sind ausdrücklich nicht zugelassen.
- 6. Bearbeitungszeit: 120 Minuten.
- Unterschreiben Sie die Prüfung erst beim Eintragen Ihres Namens in die Sitzliste.

| <br>  |          |    | <br> |
|-------|----------|----|------|
| (Unte | rschrift | :) |      |

| Punkte | Korrektur |
|--------|-----------|
| $\sum$ |           |

### Aufgabe 1 (8 Punkte)

Die Kraftvektoren  $F_A$ ,  $F_B$  und deren Angriffspunkte  $r_{OA}$ ,  $r_{OB}$  seien gegeben. Außerdem ist der Angriffspunkt  $r_{OC}$  eines dritten Kraftvektors  $F_C$  gegeben.

$$\mathbf{F}_{A} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{F}_{B} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}, \qquad \mathbf{r}_{OA} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{r}_{OB} = \begin{bmatrix} 0 \\ a \\ b \end{bmatrix}, \ \mathbf{r}_{OC} = \begin{bmatrix} c \\ a \\ 0 \end{bmatrix}$$

Die Kraft  ${\bf F}_C$  steht senkrecht auf  ${\bf F}_A$  sowie senkrecht auf  ${\bf F}_B$  und hat den Betrag  $|{\bf F}_C|=\sqrt{5}$ . Die x-Komponente der Kraft  ${\bf F}_C$  soll dabei in positive Richtung zeigen.

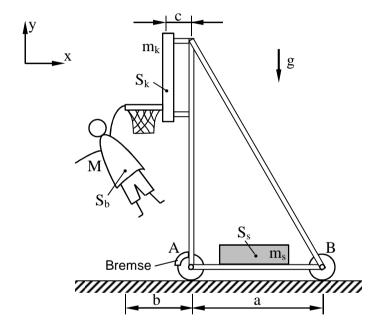
a) Bestimmen Sie den Kraftvektor  $\mathbf{F}_{C}$ .

b) Geben Sie die Beziehung zur Berechnung des Kraftwinders  $(\mathbf{F}, \mathbf{M}^{(A)})$  bezüglich des Punktes A an.

-----

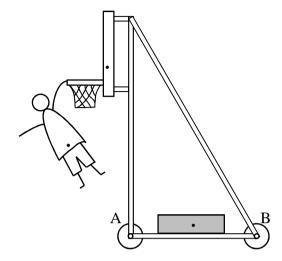
c) Bestimmen Sie den Kraftwinder  $(\mathbf{F}, \mathbf{M}^{(A)})$ .

$$\mathbf{F} = \begin{bmatrix} \dots & \mathbf{M}^{(A)} = \begin{bmatrix} \dots & \mathbf{M}^{(A)} \end{bmatrix}$$


d) Wie lautet die Transformationsbeziehung für den Kraftwinder bei einem Wechsel des Bezugspunktes von A nach B?

$$(\textbf{F}, \textbf{M}^{(B)}) = (\ \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_)$$

- e) Damit sich System im Gleichgewicht befindet, soll  $\mathbf{F}_C$  durch einen anderen Vektor ersetzt werden. Wie muss  $\overline{\mathbf{F}}_C$  gewählt werden?
  - $\Box$   $\bar{\mathbf{F}}_{C}$  muss ein Nullvektor sein.
  - $\Box \ \overline{\mathbf{F}}_{C} = -\mathbf{F}_{A} \mathbf{F}_{B}.$
  - $\square$  Es gibt kein  $\overline{\mathbf{F}}_{C}$ , mit dem das System im Gleichgewicht ist.

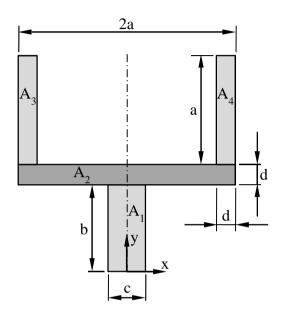

#### Aufgabe 2 (14 Punkte)

Eine mobile Basketball-Korbanlage soll untersucht werden. Die beiden Räder A und B haben den horizontalen Abstand a voneinander. Damit die Korbanlage nicht wegrollt, wird das Rad A zusätzlich mit einer Bremse fixiert. Der Korb und das Brett sind ein Körper (Masse  $m_k$ , Schwerpunkt  $S_k$ ). Zur Sicherheit liegt ein Gegengewicht (Masse  $m_s$ , Schwerpunkt  $S_s$ ) mittig zwischen den beiden Rädern. Die Masse der Rahmenkonstruktion wird vernachlässigt. Nach einem erfolgreichen Dunking hängt der Basketballer (Masse M, Schwerpunkt  $S_b$ ) provokativ am Ring und das System befindet sich im Gleichgewicht. Das System wird als eben betrachtet.



a) Kreuzen Sie die hier vorliegende Lagerung an.

b) Schneiden Sie die Korbanlage inklusive Basketballer frei, zeichnen Sie alle angreifenden Kräfte in die Skizze ein und benennen Sie diese.




| c) | Geben Sie die Gleichgewichtsbedingungen an. |  |
|----|---------------------------------------------|--|
|    |                                             |  |
|    |                                             |  |
|    |                                             |  |
|    |                                             |  |
| d) | Bestimmen Sie alle Lagerkräfte.             |  |
|    |                                             |  |
|    |                                             |  |
|    |                                             |  |
|    |                                             |  |

| e) | elche Bedingung muss für die Lager<br>r Korbanlage verhindert wird?                         | kra | ft in ${ m B}$ gelten, damit das Umkippen                                              |
|----|---------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------|
|    | <br>                                                                                        |     |                                                                                        |
| f) | estimmen Sie die Bedingung für die<br>orbanlage nicht kippt.                                | e M | asse des Basketballers, damit die                                                      |
|    | <br>                                                                                        |     |                                                                                        |
| g) | euzen Sie an, welche Änderung die<br>ehrfaches Ankreuzen ist möglich.)                      | Ge  | efahr des Kippens verringern kann.                                                     |
|    | Bremse an Rad B statt an Rad A                                                              |     | Radius der Räder vergrößern                                                            |
|    | Abstand der Lager vergrößern, bei gleichbleibendem Abstand zwischen Rad $A$ und $S_{\rm s}$ |     | Abstand der Lager vergrößern und $S_{\rm s}$ in der Mitte zwischen Rad $A$ und Rad $B$ |
|    | Korbhöhe verringern                                                                         |     | Korbhöhe vergrößern                                                                    |
|    |                                                                                             |     |                                                                                        |

# Aufgabe 3 (12 Punkte)

Zum Aufstellen des dargestellten symmetrischen American-Football-Tors muss vorab dessen Schwerpunkt berechnet werden. Das Tor besteht aus vier Teilkörpern, deren Flächen  $A_1$ ,  $A_2$ ,  $A_3$  und  $A_4$  unten skizziert sind.



a) Berechnen Sie die Flächeninhalte der vier Teilflächen.

 $A_1 =$ \_\_\_\_\_,  $A_2 =$ \_\_\_\_\_

 $A_3 =$ \_\_\_\_\_,  $A_4 =$ \_\_\_\_\_

b) Berechnen Sie die Gesamtfläche.

A = \_\_\_\_\_

c) Geben Sie die Schwerpunktskoordinaten der vier Teilflächen an.

Fläche 1:  $x_{S1} =$ \_\_\_\_\_\_,  $y_{S1} =$ \_\_\_\_\_\_

Fläche 2:  $x_{s2} =$ \_\_\_\_\_,  $y_{s2} =$ \_\_\_\_\_\_

Fläche 3:  $x_{S3} =$ \_\_\_\_\_,  $y_{S3} =$ \_\_\_\_\_

Fläche 4:  $x_{S4} =$ \_\_\_\_\_,  $y_{S4} =$ \_\_\_\_\_\_

d) Wie lautet die allgemeine Formel zur Bestimmung des Flächenschwerpunktes  $y_s$  zusammengesetzter Körper?

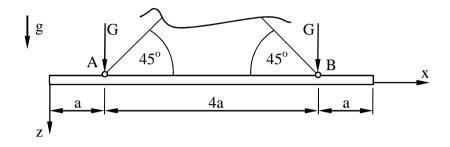
 $y_s =$ 

Für die weiteren Teilaufgaben gilt  $b = \frac{a}{2}$  und c = 2d.

e) Berechnen Sie den Schwerpunkt der Gesamtfläche.

f) Welches Volumen ergibt sich, wenn die Gesamtfläche um die x-Achse rotiert? Geben Sie sowohl die allgemeine Formel als auch das sich für die dargestellte Gesamtfläche ergebende Volumen an.

V = \_\_\_\_ = \_\_\_


g) Kann mit der Guldin'schen Regel und dem Ergebnis aus Aufgabenteil e) das Volumen des Körpers, der durch Rotation der Gesamtfläche um die y-Achse entsteht, bestimmt werden?

O ja

- O nein
- O keine Aussage möglich

## Aufgabe 4 (16 Punkte)

Beim Bau eines Wolkenkratzers in New York City sitzen zwei Arbeiter (jeweils Gewicht G) auf einem Balken. Das Eigengewicht des Balkens soll als konstante Streckenlast  $q_0$  angenommen werden. Der Balken hängt an zwei Seilen, die gemeinsam an einem Kran verankert sind. Die Bauarbeiter sitzen auf den Aufhängepunkten A und B der Seile und das System befindet sich im Gleichgewicht.

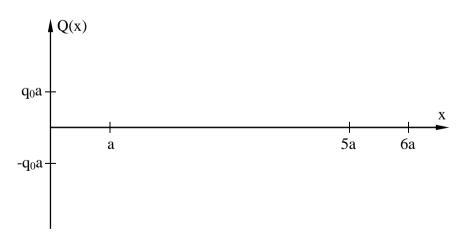


a) Schneiden Sie den Balken frei, zeichnen Sie alle angreifenden Kräfte und Momente in die Freischnittskizze ein und benennen Sie diese.



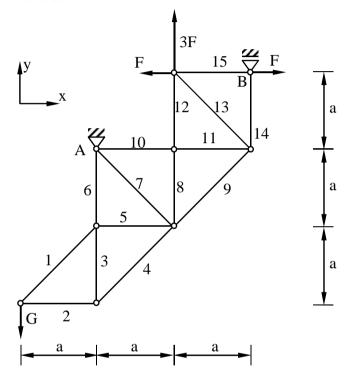
b) Stellen Sie eine geeignete Gleichgewichtsbedingung zur Bestimmung der Seilkraft S auf.

\_\_\_\_\_


c) Berechnen Sie die Seilkraft.

S = \_\_\_\_\_\_

d) Bestimmen Sie unter Verwendung von Föppl-Klammerfunktionen die Verläufe der Normalkraft, der kontinuierlichen Belastung, der Querkraft und des Biegemoments.


$$N(x) =$$
 $q(x) =$ 
 $Q(x) =$ 
 $M(x) =$ 

e) Skizzieren Sie den Querkraftverlauf.



### Aufgabe 5 (10 Punkte)

Eine als ebenes Fachwerk entworfene Hallendeckenkonstruktion zur Anbringung eines Basketballkorbs soll untersucht werden. Die Konstruktion wird durch das Gewicht G einer daran befestigten Korbanlage belastet. Die weitere Deckenkonstruktion wurde hier freigeschnitten und durch die eingezeichneten Kräfte ersetzt.

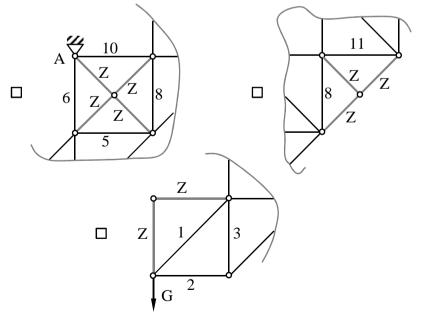


a) Geben Sie die Lagerreaktionskräfte in den Punkten A und B an.

b) Bei welchen Stäben handelt es sich um Nullstäbe? (Mehrfaches Ankreuzen ist möglich.)

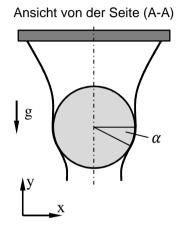
□ 1 □ 2 □ 6

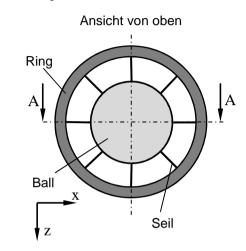
□ 14 □ 15 □ keiner der angegebenen Stäbe


c) Zeichnen Sie einen geeigneten Ritter-Schnitt zur Berechung der Stabkraft  $S_6$  sowie den zugehörigen Momentenbezugspunkt P in die Skizze ein.

d) Bestimmen Sie die Stabkraft S<sub>6</sub>.

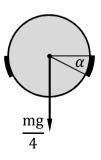
 $S_6 =$ \_\_\_\_\_\_\_\_


e) Bestimmen Sie mit einem geeigneten Verfahren die Stabkraft S<sub>4</sub>.


f) Zur Verbesserung der Dunking-Fähigkeit sollen zusätzliche Stäbe Z eingebaut werden. Kreuzen Sie die Konstruktionen an, die **nicht** sinnvoll sind.



#### Aufgabe 6 (7 Punkte)


Bei einem neuen Basketball (homogen, Masse m) ist der Haftreibungskoeffizient  $\mu_0$  zwischen dem Netz und dem Ball so hoch, dass der Ball nach dem Korberfolg im Netz stecken bleibt. Das Netz besteht aus insgesamt acht Seilen, die den Ball jeweils mit dem Winkel  $\alpha$  umschlingen.





Aufgrund der symmetrischen Anordnung kann das System als ebenes Problem mit zwei Seilen und geviertelter Masse des Balles betrachtet werden.

a) Zeichnen Sie in der Ebene des dargestellten Seitenquerschnitts alle wirkenden Kräfte in die Freischnittskizze des Balles inklusive der Seilstücke ein und benennen Sie diese.



| b) | Geben Sie die Gleichgewichtsbedingung in vertikaler Richtung für den Bal inklusive der Seilstücke an.                                                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                      |
| c) | Geben Sie die Seilkraft oberhalb des Balles für ein Seil an. Die Seilkraft unterhalb des Balles beträgt für ein Seil dabei aufgrund des Eigengewichts $S_U=m_Ug/8$ . |
|    | S <sub>o</sub> =                                                                                                                                                     |
| d) | Wie lautet der allgemeine Zusammenhang zwischen den Kräften $S_{\text{O}}$ und $S_{\text{U}}$ unter Berücksichtigung der Seilreibung?                                |
|    |                                                                                                                                                                      |
| e) | Wie groß muss die Masse des Balles mindestens sein, damit dieser nach unten durchrutscht?                                                                            |
|    |                                                                                                                                                                      |
|    |                                                                                                                                                                      |

# **ENDF**