Institut für Technische und Num. Mechanik Prof. Dr.-Ing. Prof. E.h. P. Eberhard

Maschinendynamik
. Fleißner S 2

Dr.-Ing. F. Fleißner

# Maschinendynamik Seminar 2

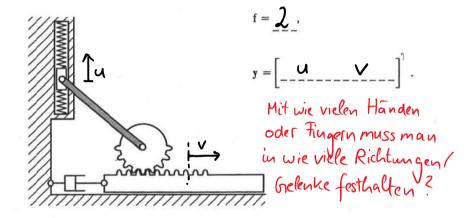
- 1. Die Aufgabenblätter umfassen 4 Aufgaben auf 8 Blättern.
- 2. Nur vorgelegte Fragen beantworten, keine Zwischenrechnungen eintragen.
- 3. Alle Ergebnisse sind grundsätzlich in den gegebenen Größen auszudrücken.
- Als Hilfsmittel sind ausschließlich 6 Seiten Formelsammlung (entspricht 3 Blättern DIN-A4 doppelseitig) zugelassen. Elektronische Geräte sind ausdrücklich nicht zugelassen.
- 5. Bearbeitungszeit: 120 Minuten.

Die Musterlösungen zu diesen Aufgaben werden im Anschluss an das Seminar auf der Vorlesungshomepage bereitgestellt.

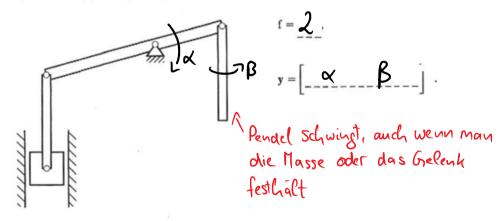
#### Aufgabe 1

Geben Sie für folgende Systeme jeweils die Zahl der Freiheitsgrade und geeignete verallgemeinerte Koordinaten an. Tragen Sie die Koordinaten in die Zeichnung ein und benennen Sie diese.

#### a) Ebener Mechanismus

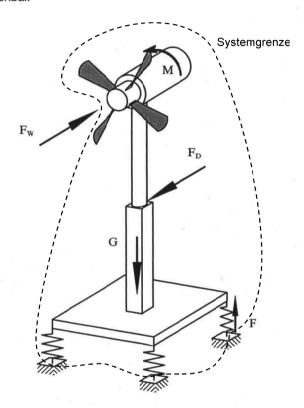


## b) Ebenes Kipphebelgestänge



Aufgabe 2

Die Fußplatte einer Windturbine ist elastisch gelagert. Die Turbine ist um die Hochachse drehbar.



|                                                 |                                                  | Windkraft Kounte    |                          |                       |                         |                                                             |                                |                                 |  |
|-------------------------------------------------|--------------------------------------------------|---------------------|--------------------------|-----------------------|-------------------------|-------------------------------------------------------------|--------------------------------|---------------------------------|--|
| Klassifizieren Sie die eingetragenen Kräfte und | zieren Sie die eingetragenen Kräfte und Momente. |                     |                          |                       |                         | Jindkraft konnte<br>age-, geschw und<br>seschlennigungsabh. |                                |                                 |  |
| außerer<br>Ursprung                             | äuβere Kraft/Moment                              | innere Kraft/Moment | eingeprägte Kraft/Moment | Reaktionskraft/Momens | P-Kraft/Moment          | PD-Kraft/Moment                                             | PID – Kraft/Moment             | Sein                            |  |
| Gewicht G der Windturbine                       | X                                                |                     | X                        |                       | X                       |                                                             |                                |                                 |  |
| Windkraft F <sub>W</sub>                        | X                                                |                     | X                        |                       | $\bowtie$               | $\bowtie$                                                   |                                |                                 |  |
| Kraft F <sub>D</sub> im Drehgelenk              |                                                  | X                   | -                        | X                     |                         |                                                             |                                | 5                               |  |
| Aufstandskraft F                                | X                                                |                     | X                        | 1                     | X                       |                                                             |                                |                                 |  |
| Schnittmoment M in der Rotorwelle               |                                                  | X                   |                          | ×                     | $\bowtie$               | $\bowtie$                                                   | $\bowtie$                      |                                 |  |
| gehorchen einem<br>Kraftgesetz<br>La            | gerh                                             | (raft               | /                        |                       | Rea<br>las<br>in<br>cho | klion<br>sen<br>P-1<br>nrak                                 | nskra<br>sich<br>PID-<br>teris | fle<br>micht<br>Kräfle<br>ieren |  |

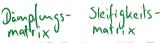
# Aufgabe 3 (21 Punkte)

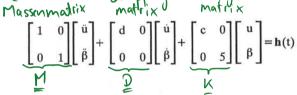
Die Bewegung einer Seilbahngondel, bestehend aus dem Gondellager und der Kabine soll auf Stabilität und Eigenschwingungsverhalten untersucht werden.

Die linearen Bewegungsgleichungen lauten in Abhängigkeit der Steifigkeit c und der Dämpfung d des



Pincare





a) Geben Sie die Zahl der Freiheitsgrade und die Dimension des Zustandsvektors

$$f = 2$$
,

$$\underline{x} = \begin{bmatrix} \dot{y} \\ \dot{\dot{y}} \end{bmatrix}$$

b) Bestimmen Sie das charakteristische Polynom.

$$= \frac{(\lambda^2 + d\lambda + c)(\lambda^2 + 5)}{(\lambda^2 + d\lambda^3 + (5 + c)\lambda^2 + 5d\lambda + 5c)}$$

c) Wie lauten die charakteristischen Koeffizienten?

$$a_3 = -5 d, \qquad a$$

$$u_2 - c$$
,

$$a_4 = 5 c$$

$$\sum a_1 = d$$

$$a_2 = 5 + 0$$

$$_{3} = 5 d$$

$$a_4 = 5 c$$

$$+ c$$
,  $a_3 = 5$ 

$$a_4 = c + d$$

2 Klammer=0 1. Klammer = D

(1): 
$$\rho(\lambda) = 0 \implies \lambda_{1/2} = \dots \qquad \lambda_{3/4} = \dots$$

d) Geben Sie die fehlenden Eigenwerte der Seilbahngondel an.

$$\lambda_{1,2} = \pm \sqrt{5}i, \qquad \lambda_{3,4} = \frac{-d + \sqrt{d^2 - 4c^2}}{2}$$
Eigenkrastrequent  $\omega = |m(\lambda)| = -\frac{d}{2} + i\sqrt{c}$ 

e) Welche Stabilitätsaussage ist nach dem Eigenwertkriterium korrekt? Abklinghoeff. 5= Re(2) EigenKreisfreq. Das System ist

M19  $\square$  asymptotisch stabil,  $\omega = l_{m}(\alpha)$   $\square$  instabil,  $d \in R_{c}(\lambda_{10}) = 0$   $\square$  keine Aussage möglich.

f) Wie lauten die Eigenfrequenzen des Systems für  $4c \ge d^2$ ?  $\omega_1 = \underbrace{ 5}, \qquad \omega_2 = \underbrace{ 5}, \qquad \omega_2 = \underbrace{ 5}, \qquad \omega_3 = \underbrace{ 5}, \qquad \omega_4 = \underbrace{ 5}, \qquad \omega_4 = \underbrace{ 5}, \qquad \omega_5 = \underbrace{ 5}, \qquad \omega_$ 

$$\omega_1 = \frac{5}{1}$$

g) Geben Sie die zugehörigen Eigenvektoren an.

$$\tilde{y}_1 = \begin{bmatrix} & \mathcal{O} \\ & \uparrow \end{bmatrix}$$

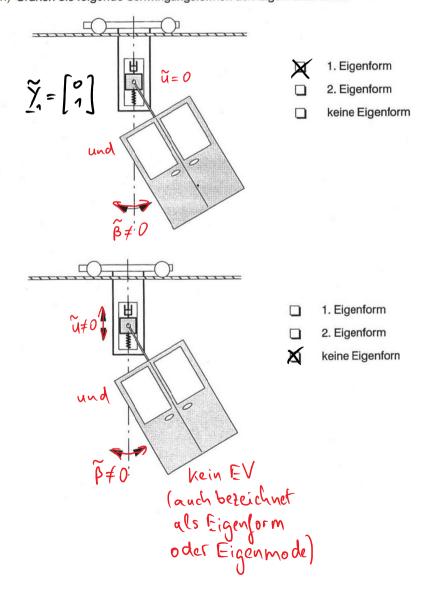
$$\tilde{y}_2 = \begin{bmatrix} & & 1 & \\ & & O & \end{bmatrix}$$

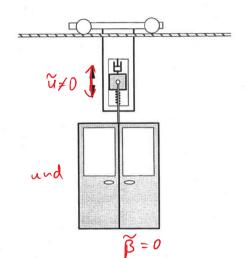
$$q(\lambda) = \det(\underline{M}\lambda^{2} + \underline{D}\lambda + \underline{K})$$

$$= \frac{1}{1} \det(\underline{M}\lambda^{2} + \underline{D}\lambda + \underline{K})$$

$$\begin{bmatrix} \underline{M} \lambda_{3/4}^2 + \underline{D} \lambda_{3/4} + \underline{M} \end{bmatrix} \underbrace{\lambda_{1}}_{1} = \underline{C}$$

h) Ordnen Sie folgende Schwingungsformen den Eigenvektoren zu.





- 1. Eigenform
- 2. Eigenform
- keine Eigenform

## Aufgabe 4 (34 Punkte)

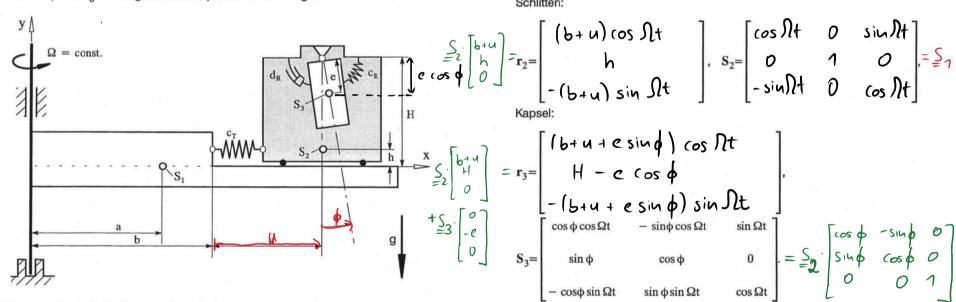
Die Bewegung einer Trainingszentrifuge für Astronauten soll untersucht werden. Der

Zum Zeitpunkt  $t_0 = 0$  liegt der Schwerpunkt des Zentrifugenarms auf der x-Achse.

c) Geben Sie die Ortsvektoren zu den Massenmittelpunkten sowie die Drehmatrizen von Zentrifugenarm, Schlitten und Kapsel an.

Zentrifugenarm (Masse  $m_1$ ) dreht sich mit der konstanten Drehgeschwindigkeit  $\Omega$  um die y-Achse. Entlang des Arms kann sich der Schlitten (Masse  $m_2$ ) reibungsfrei in radialer Richtung translatorisch bewegen. Zwischen Schlitten und Arm befindet sich eine Feder (Steifigkeit  $c_T$ ). Die Astronautenkapsel (Masse  $m_3$ , Trägheitsmomente  $I_x$ ,  $I_y$ ,  $I_z$ ) kann im Schlitten in radialer Richtung pendeln (Drehfeder  $c_R$ , Drehdämpfer  $d_R$ ).

Zum Zeitpunkt  $t_0 = 0$  liegt der Schwerpunkt des Zentrifugenarms auf der x-Achse. Schlitten:



Hinweis: Die Aufgabe kann auch mit Aufgabenteil i) begonnen werden.

a) Wieviele Freiheitsgrade hat das System?

$$f = \lambda$$
.

b) Welcher Lagevektor eignet sich zur Beschreibung des Mehrkörpersystems?

d) Geben Sie die folgenden Geschwindigkeiten und Beschleunigungen an. Zentrifugenarm:

$$v_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \dot{y} + \begin{bmatrix} -a \ln \sin(\Omega t) \\ 0 \\ -a \ln \cos(\Omega t) \end{bmatrix} \dot{y} = \begin{bmatrix} -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \end{bmatrix} \dot{y} = \begin{bmatrix} -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \end{bmatrix} \dot{y} = \begin{bmatrix} -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \end{bmatrix} \dot{y} = \begin{bmatrix} -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega t) \end{bmatrix} \dot{y} = \begin{bmatrix} -a \ln \cos(\Omega t) \\ -a \ln \cos(\Omega$$

$$a_1 = J_{T1} \ddot{y} + \begin{bmatrix} -\alpha \Omega^2 \cos \Omega t \\ 0 \\ \alpha \Omega^2 \sin \Omega t \end{bmatrix}$$

$$\alpha_{1} = J_{R1} \ddot{y} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \beta_{R1} = \beta_{R1} + \beta_{R1} = \beta_{R1} + \beta_{R1} = \beta_{R1} + \beta_{R1} = \beta_{R1} = \beta_{R1} + \beta_{R1} = \beta_{R1}$$

Schlitten:

$$v_2 = \begin{bmatrix} \cos \Lambda t & 0 \\ o & o \\ -\sin \Lambda t & 0 \end{bmatrix} y + \begin{bmatrix} -(b+u) \ln \sin \Lambda t \\ 0 \\ -(b+u) \ln \cos \Lambda t \end{bmatrix}$$

$$a_2 = J_{T2}\ddot{y} + \begin{cases} -\lambda \dot{u} \int_{0}^{\infty} \sin \beta t - (b_{+}u) \int_{0}^{\infty} \cos \beta t \\ -\lambda \dot{u} \int_{0}^{\infty} \cos \beta t + (b_{+}u) \int_{0}^{\infty} \sin \beta t \end{cases}$$

Kapsel:

$$\begin{aligned} \mathbf{v}_3 &= \begin{bmatrix} &\cos\Omega t & & e\cos\varphi\cos\Omega t \\ & 0 & & e\sin\varphi \\ & -\sin\Omega t & & -e\cos\varphi\sin\Omega t \end{bmatrix} \dot{\mathbf{y}} + \overline{\mathbf{v}}_3 \;, \end{aligned}$$

$$\begin{bmatrix}
-\Omega \sin \Omega t & 0 \\
0 & 0 \\
-\Omega \cos \Omega t & 0
\end{bmatrix}$$

$$\frac{1}{2} = \frac{d \cdot 1}{dt} \cdot \frac{y}{dt}$$

$$\omega_{3} = \begin{bmatrix} 0 & \text{Sin } \mathbb{N}t \\ 0 & 0 \\ 0 & \text{cos } \mathbb{N}t \end{bmatrix} \dot{y} + \begin{bmatrix} 0 \\ \mathbb{N} \\ 0 \end{bmatrix}$$

e) Wie groß ist die auf den Schlitten wirkende Kraft der Feder zwischen Zentrifugenarm und Schlitten? (Die Feder ist für  $u=u_0$  ungespannt.)

f) Wie groß ist das auf den Schlitten wirkende Moment zwischen Schlitten und Kapsel? (Die Drehfeder ist für  $\phi = 0$  ungespannt.)

g) Bestimmen Sie die eingeprägten Kräfte und Momente auf den Schlitten.

$$\mathbf{f}_{2}^{e} = \begin{bmatrix} -c_{T}(u-u_{o}) \cos \Omega t \\ -m_{2}g \\ c_{T}(u-u_{o}) \sin \Omega t \\ (c_{R}\phi + d_{R}\phi) \sin \Omega t \end{bmatrix}$$

$$\mathbf{f}_{2}^{e} = \begin{bmatrix} (c_{R}\phi + d_{R}\phi) \sin \Omega t \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -i \iint \sin \Omega t - (b+u) \iint^{2} \cos \Omega t \\ 0 \\ -i \iint \cos \Omega t + (b+u) \iint^{2} \sin \Omega t \end{bmatrix}$$

$$\frac{1}{2} \sum_{k=1}^{\infty} \frac{d \overline{y}_{2}}{dt}$$

$$= \sum_{n=1}^{\infty} \left[ -c_{T}(u - u_{0}) - m_{2}g \right]$$

Schlitten:

$$= S \left[ \begin{array}{c} 0 \\ 0 \\ c_R \phi + d_R \phi \end{array} \right]$$

h) Weshalb werden die Newton-Eulerschen-Gleichungen des Zentrifugenarms zum Aufstellen der Bewegungsgleichungen nicht benötigt?

Der Arm ist durch D= const. gebunden. (Arm hat keine Dynamik, bzw. Bewegung andert sich wicht) i) Ergänzen Sie die Newton-Eulerschen-Gleichungen für den Schlitten und die Kapsel. m<sub>2</sub> cos Nt O m3 cos lt m3e cos \$ cos lt

O m3e sin \$
-m3 sin lt -m3e cos \$ sin lt Drallsatz für Schlitten  $I_z \sin \Omega t$  $I_z \cos \Omega t$ Ventor der Ventor der Tragheitskräfte M ] ÿ eingeprästen Kräfte Zentifugalkráfte

 $\left(\frac{\partial x}{\partial y}\Big|_{Y_{s},\dot{Y}_{s}} - \frac{\partial g}{\partial y}\Big|_{Y_{s},\dot{Y}_{s}}\right)\dot{\eta} + \left(\frac{\partial x}{\partial y}\Big|_{Y_{s},\dot{Y}_{s}} + \frac{\partial x}{\partial y}\Big|_{Y_{s},\dot{Y}_{s}} - \frac{\partial g}{\partial y}\Big|_{Y_{s},\dot{Y}_{s}}\right)\dot{\eta} = g(y,\dot{y},\dot{y})$ 

Das Aufstellen der Bewegungsgleichungen aus den Newton-Eulerschen-Gleichungen wurde mit einem Computerprogramm durchgeführt. Es ergibt sic

$$\left[ \begin{array}{ccc} m_2+m_3 & m_3\ e\cos\varphi \\ m_3\ e\cos\varphi & I_z+m_3\ e^2 \end{array} \right] \ddot{\boldsymbol{y}} + \left[ \begin{array}{ccc} -(m_2+m_3)(b+u)\Omega^2-m_3\ e\sin\varphi(\dot{\varphi}^2+\Omega^2) \\ (I_y-I_x)\ \Omega^2\sin\varphi\cos\varphi-m_3\ e\ \Omega^2\cos\varphi(e\sin\varphi+b+u) \end{array} \right] = \left[ \begin{array}{ccc} c_T\ (u_0-u) \\ -m_3\ g\ e\sin\varphi-c_R\varphi-d_R\dot{\varphi} \end{array} \right] .$$

i) Linearisieren Sie die Bewegungsgleichungen für kleine Auslenkungen, Geschwindigkeiten und Beschleunigungen um die Lage  $u=u_0$  und  $\varphi=0$ , und geben Sie die Matrizen M, D und K sowie den Erregervektor h(t) der linearisierten Bewegungsgleichungen an. /s = [u]

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} +$$

k) Sind die linearisierten Bewegungen voneinander entkoppelt?

Nein, da Nebendiagonalen von Mund K ≠ 0.