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Zusammenfassung

Die kommunikationsbasierte Kooperation mehrerer robotischer Systeme hat das Poten-
zial, den Horizont dessen, was mit robotischer Automation erreichbar ist, nachhaltig zu
erweitern. Daher rücken dynamisch anpassbare robotische Netzwerke zunehmend in den
Fokus der Forschung, die in den letzten Jahrzehnten zuvorderst die Verbesserung einzelner
Roboter vorangetrieben hat. Hierbei verbindet sich mit der in diesem Sinne verteilten
Robotik die Hoffnung, die erreichbare Flexibilität, Robustheit und Leistungsfähigkeit
gegenüber zentralisierten Ansätzen entscheidend positiv zu beeinflussen. Trotz dieser
charakteristischen, erwarteten Vorteile sind robotische Netzwerke jedoch noch vorwiegend
Gegenstand von Forschung und Forschungsvisionen und noch nicht in die Breite der Anwen-
dung gelangt. Dies mag auch damit im Zusammenhang stehen, dass die erwarteten Vorteile
zum Teil durch eine gesteigerte Systemkomplexität aufgewogen werden, schließlich ist die
Entwicklung eines zuverlässigen und dynamisch anpassbaren verteilten Systems durchaus
herausfordernd. Dabei ist bereits die herkömmliche Robotik durch ihren interdisziplinären
Charakter ein anspruchsvolles Betätigungsfeld mit mannigfaltigen Problemstellungen.
Infolgedessen ist die verteilte Robotik in einem Stadium, in dem sich Fortschritte durch
zielgerichtete Forschung anhand klar definierter Modellprobleme erzielen lassen. Aus diesem
Grund stellt sich diese Dissertation den Herausforderungen der verteilten Robotik an-
hand einer kooperativen Transportaufgabe. Dabei sollen omnidirektionale mobile Roboter
polygonale Objekte komplett selbstständig und nur durch Schubkräfte transportieren.
Diese Aufgabe ist hervorragend als Modellproblem geeignet, da sie alle für das Forschungs-
feld charakteristischen Herausforderungen mit sich bringt und gleichzeitig durch ihren
anschaulichen Charakter eine intuitive Beurteilung der Funktionstüchtigkeit ersonnener
Regel- und Organisationsverfahren ermöglicht. Die Dissertationsschrift behandelt alle
Aspekte der Aufgabe auf umfassende Art und Weise. So werden neben den Organisations-
und Regelverfahren auch die zugrundeliegende verteilte Programmarchitektur sowie sogar
die eingesetzten, extra für die Forschung in der verteilten Robotik entwickelten mobilen
Roboter entworfen und untersucht. Die im Rahmen von Simulationen und Experimenten
erzielten Ergebnisse zeugen hierbei von einer beinahe beispiellosen Einsatzflexibilität des
ersonnenen Transportansatzes. Insbesondere werden alle maßgeblichen, versprochenen
Vorteile der verteilten Robotik praktisch umgesetzt, wobei der dynamischen Anpassung des
robotischen Netzwerks eine besondere Bedeutung zukommt. Die vielseitige Anwendbarkeit
des vorgestellten Ansatzes geht hierbei vor allem auf den Einsatz optimierungsbasierter
Ansätze für die wichtigsten Unterprobleme zurück. Die Transportaufgabe wird aufgeteilt
in eine Formationsregelungsaufgabe sowie eine Organisationsaufgabe. Letztere besteht
darin, für den Objekttransport geeignete Formationen zu bestimmen. Dies ermöglicht
die Nutzung verteilter modellprädiktiver Regelung für die Formationsregelung und die
Lösung der Organisationsaufgabe mithilfe von verteilter Optimierung. Darüber hinaus
werden in der Dissertation auch die selbstständige Aushandlung einer Aufgabenverteilung
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zwischen den Robotern sowie die lokale und globale Navigation behandelt. Die erzielten
Erkenntnisse erstrecken sich über die unmittelbaren Erfordernisse des Modellproblems
hinaus. Ein Teilaspekt, der sich auch in anderen Forschungsvorhaben in der verteilten
Robotik als nützlich erweisen könnte, ist die entwickelte verteilte Programmarchitektur, die
insbesondere den Übergang von Simulationen zu Experimenten stark vereinfacht. Ebenso
sind die entwickelten mobilen Roboter auch für andere Aufgaben und die Behandlung
anderer Forschungsfragen geeignet. Überdies ist die Formationsregelung von allgemeinerer
Nützlichkeit. Daher wird der vorgeschlagene modellprädiktive Ansatz gesondert behandelt
und analysiert. Hierbei bestätigt der Ansatz seine aufgrund theoretischer Überlegungen
erwarteten Vorteile auch in Experimenten und im Vergleich zu einem gebräuchlicheren
Ansatz, obwohl letzterer so modifiziert wurde, dass auch dieser Beschränkungen der Stell-
größe berücksichtigen kann. Nicht zuletzt ist eine vorgeschlagene, verteilte Fassung eines
Partikelschwarmoptimierers auf Basis der erweiterten Lagrange-Funktion potenziell weit
über die Robotik hinaus von Nutzen. In der Transportaufgabe leistet der Algorithmus
gute Dienste bei der Bestimmung von zum Transport geeigneten Formationen.
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Abstract

Leveraging the communication-based cooperation of multiple robotic systems has the
potential to significantly further the state of the art of what is achievable with robotic
automation. Therefore, beyond solely improving the capabilities of individual robotic
agents, reconfigurable robotic networks have come to the attention of research and industry.
However, despite the potential to increase flexibility, robustness, and performance, robotic
networks are not yet in widespread application, with many research challenges remaining.
After all, developing a reliable, reconfigurable distributed system is very difficult, adding
to the manifold, interdisciplinary challenges posed by robotics in general. Hence, to better
understand and subsequently overcome these challenges, distributed robotics is still in a
state where it can benefit significantly from research that tackles well-defined benchmark
problems. Consequently, this thesis faces the challenges of distributed robotics at the
example of a cooperative transportation task. In the task, omnidirectional mobile robots
cooperate to maneuver polygonal objects purely by pushing forces and in a completely
self-reliant manner. The task is found to be a formidable benchmark problem since it raises
all major challenges of the field while still being easily graspable, intuitively making evident
the qualities of the control and organization schemes employed. The thesis discusses all
aspects of the task in an encompassing manner, not only including the design of the
employed control and organization methods, but also the software architecture and even
the custom robotic hardware employed. Results from simulations and real-world hardware
experiments show that the proposed scheme is of unprecedented versatility, putting into
practice all major promises of distributed robotics, including plug-and-play control for
online reconfigurations of the robotic network. This is achieved by relying, at heart, on
optimization-based schemes. The task is decomposed into a formation control task and the
organizational task of inferring formations useful for manipulation, allowing the usage of
distributed model predictive control for formation control and of distributed optimization
for organization. Further challenges dealt with include self-reliant task allocation as well
as local and global navigation. However, the contributions of the thesis extend beyond
the immediate needs of the benchmark problem. A component that may prove helpful in
other research endeavors in the field includes the devised distributed software architecture,
which greatly facilitates the transition from simulations to experiments. Similarly, the
custom mobile robot and different proposed setups of the formation controller are also
suited to other tasks and projects. Due to formation control’s universal appeal, the
proposed approach based on distributed predictive control is analyzed separately from the
transportation task. In experiments, the predictive control-based approach confirms its
theory-rooted advantages in comparison to a more traditional approach, despite the latter
being modified to also respect input constraints. Finally, a proposed distributed version of
an augmented Lagrangian particle swarm optimization algorithm, which is used to devise
formations in the thesis, may even prove useful far beyond robotics.
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Chapter 1

Introduction

Robotic automation has been a major contributing factor to the labor productivity growth
across various industries in certain industrialized countries, even seemingly wielding an
influence on economy-wide productivity measures [GraetzMichaels18, KromannEtAl19].
While initial development was largely focused on robotics in factories and similar controlled
industrial environments, robots have now started to pervade into other areas, including agri-
culture, transportation, medicine, health care, and households [Hägele16, HazarikaDixit18].
Nowadays, in some areas, the social acceptance of working together with robots or even of
substituting human by robotic work may be as much of a challenge as the engineering
problems involved [SavelaTurjaOksanen18]. However, the mere fact that such societal
questions are raised is a testament to the vast technological and methodological progress
that has made the widespread automation of work tasks through robotic systems not
only conceivable but a reality. A driver of progress has been the improvement of individ-
ual robotic agents’ capabilities, with improvements in the fields of control engineering,
sensing and vision, software and information technology, the semiconductor industry,
and many more having worked in tandem to realize what has previously been science
fiction [HazarikaDixit18].

Apart from improving the individual robot, another fruitful area for efficiency gains
may be the cooperation of multiple robots to automate work tasks. A robotic work-
force may be used more efficiently if larger tasks could be handled by a larger, coop-
erating group of robots, whereas the large group could potentially split up to handle
multiple smaller tasks simultaneously in smaller groups. Similarly, robustness may be
increased since a group of robots could reorganize and continue work if one of the robots
breaks down due to a technical failure. Furthermore, strength can lie in numbers, i.e.,
many robots may be able to achieve tasks inconceivable for an individual robot oper-
ating on its own. Nowadays, especially communication-based cooperation is believed
to be a promising area to seek robotic productivity gains [GrauEtAl17, WenHeZhu18].
In another take on the area, difficulties raised by communication have motivated re-
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search on robotic automation approaches relying on communication-free cooperation, see,
e.g., [YamadaSaito01, ChenEtAl15, DehghaniMenhaj16]. Whereas such communication-
free schemes may always have merit in hostile environments or disaster scenarios, continued
progress in communication technology has lowered the burden of communication. There-
fore, the expected advent of low-latency, high-bandwidth, and highly reliable wireless
data transfer [SachsEtAl18] is projected to have a significant and lasting impact on the
field of robotics [HolfeldEtAl16], potentially reshaping it fundamentally [KehoeEtAl15].
However, this is still very much an emerging field, with a reconfigurable, fault-tolerant,
distributed robotic network solving practical, productive tasks being more of a vision
than a widespread reality. It may be conjectured that this is due to the broad and
interdisciplinary array of challenges and difficulties involved. Not only is it the case
that new challenges are introduced, such as communication and a distributed software
architecture bringing up issues related to concurrency, but also that certain challenges from
robotics, such as control, need to be rethought for the distributed, communication-based
setting. Thus, mostly separate from applied robotics research, control theory has strived
to develop a theoretical foundation to support reliable, distributed control in robotics and
beyond, see, e.g., the overviews given by [BulloCortésMartínez09, MesbahiEgerstedt10,
BaiArcakWen11, ChristofidesEtAl13, NegenbornMaestre14]. Still, being focused on theo-
retical foundations, the newly devised methods are usually not immediately evaluated by
means of actual, realistic realizations that explicitly include wireless communication and
a distributed software architecture. This may be because overcoming the technical and
engineering challenges involved is problematic enough to constitute and motivate its very
own research fields.

On the one hand, this includes numerical methods and frameworks to formulate and
solve distributed optimization problems as they appear in optimization-based con-
trol [BurkVölzGraichen21, FarinaEtAl20]. Progress in this area can free people working
in pure control theory, striving to try their methods in realistic examples, and more
application-oriented robotics scientists from self-developing distributed numerical algo-
rithms and communication from the ground up. Since major contributions in this area are
very recent, it seems that time is ripe to transfer more of the theoretical progress made to
problems in robotics.

On the other hand, robotics research has long since tried its hand at solving practical tasks
and benchmark problems in cooperative distributed robotics, long before the more recent
progress in formal distributed control theory. Tasks in mobile robotics are widely studied
in particular, including more abstract tasks such as motion coordination and formation
control as well as more concrete ones such as multi-robot transportation, manipulation,
cooperative target search, and even robot soccer [AraiPagelloParker02]. In any case, the
research field is still in a state where meaningful benchmark problems, which incorporate
the key challenges of distributed robotics, are instrumental in developing and evaluating
new strategies for automated robotic behavior. In that regard, it is worth remembering
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that the defining purpose of a robot is to automate work, which is also reflected in the
very etymology of the word itself. And, in the classical, probably most common definition,
robotic work refers to mechanical work, e.g., performed by robots manipulating physical
objects [HazarikaDixit18]. This implies that robotics, in its classical sense, is inseparable
from mechanics. Consequently, it may be argued that a well-designed benchmark scenario
should also be appealing from a mechanical perspective. This thesis distills this line of
thinking into the goal to develop an encompassing, communication-based control and
organization scheme at the example of and tested by means of a mechanically meaningful
benchmark problem while relying, at heart, on methods rooted in control theory. In
particular, it is the goal to live up to the promises of distributed robotics by letting
different numbers of robots self-reliantly adapt to different scenarios, allowing robots
to leave and join the robotic network in the midst of the task solution. With regard
to highly time-critical decisions, the robots shall cooperate as equals, without there
being necessary an external, centralized decision-making instance. To accomplish this,
all challenges involved in the field shall be dealt with in an encompassing manner, as
made necessary by the benchmark problem’s requirements. This includes the robotic
hardware employed, the distributed software architecture including communication, as well
as simulation, and, of course, the control and organization methods governing the behavior
of the robots. Furthermore, it is the goal to design the distributed software architecture in
a very modular manner, with well-defined interfaces between all sub-methods employed.
The resulting control and organization scheme shall be scenario-agnostic, in the sense
that it can accommodate self-reliantly to different scenarios without having to succumb to
human-lead parameter tuning. In particular, this thesis studies how the optimization-based
formulation and solution of the major involved sub-problems can help to achieve the desired
versatility of the scheme.

However, all this raises the question of which task actually composes a worthwhile
benchmark problem. It should be a mechanical task that is still intuitively clear to make
apparent the potential virtues of distributed robotics without already the description of
the benchmark problem absorbing an unnecessary amount of attention on the way toward
the truly encompassing treatment intended. At the same time, the problem should be
easily accessible to the employment of different numbers of robots to develop and test the
realization of distributed robotics’ promises with regard to flexibility. In the same vein, it
should be possible to intuitively vary the problem to test the robotic network’s ability to
accommodate to different scenarios. When chosen this way, the problem automatically
raises all the aforementioned major challenges of the research field. As a reaction to
these requirements, this thesis opts for a transportation task in which omnidirectional
mobile robots cooperatively transport an object. The robots are not rigidly attached
to the transported object in any way and, therefore, can only push but not pull the
object. The task is advantageous in the sense that it is a truly cooperative task since an
accurate manipulation usually not only benefits from but actually requires the simultaneous,
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coordinated usage of multiple mobile robots. Furthermore, the task can easily be varied
by transporting objects of different shapes along a variety of paths. Also, it is intuitively
clear that robots can easily join and leave the transportation process. Figure 1.1 gives
a glimpse of typical transportation scenarios to be considered. The figure already gives
an outlook to some of the results obtained with what is proposed in the thesis, with the
ultimate goal of the subsequent chapters being to explain how these results come to be.

It should be noted that it is not only the author of this thesis who finds cooperative
transportation to be an adequate benchmark problem for distributed robotics. In-
deed, in the form of different variations, the task has been widely studied through-
out the previous decades, both because of being able to intuitively show the virtues
of distributed robotics and because it may have practical applications in logis-
tics [AraiPagelloParker02]. In that regard, approaches appearing in literature can
be categorized into prehensile and non-prehensile transportation strategies. In pre-
hensile approaches, the robots grasp the object to transport it. Examples for ap-
proaches of this kind can, e.g., be found in [GroßMondadaDorigo06, MiyataEtAl02,
WangSchwager16, FarivarnejadWilsonBerman16]. Therefore, the scheme proposed in
this thesis belongs to the non-prehensile category, with there being a unilateral con-
tact between each robot and the object. Other non-prehensile schemes are, e.g., proposed
in [YamadaSaito01, ChenEtAl15, NeumannKitts16, DaiEtAl16]. Although such discus-
sions are relegated toward the end of the thesis, it may already be noted that this thesis’
scheme is quite unprecedented in its versatility when compared to preexisting approaches in
the literature. Most schemes merely cater to a very limited set of transportation scenarios.
Beyond the references provided so far, an introductory, separate literature overview is
deliberately avoided. Instead, relevant literature is cited throughout the thesis whenever
appropriate.

To arrive at its goals, the thesis is structured as follows. Chapters 2 and 3 introduce
the fundamentals necessary for the remaining chapters. Therefore, Chapter 2 deals with
aspects from modeling as necessary for the design of the transportation scheme and for
simulation. On the one hand, it is discussed how mechanical systems can be modeled
as multibody systems. On the other hand, it is discussed how information relevant
to robotic decision-making can be modeled. In that regard, introduced concepts that
will prove useful in different applications throughout the thesis are graphs and convex
polytopes. Furthermore, it is briefly discussed how these two can be employed for path
planning and for building a mathematical model of the workspace the robots operate in.
Subsequently, Chapter 3 introduces the optimization and control prerequisites necessary for
the cooperative transportation scheme. Hence, building upon some introductory remarks
on optimization, in the form of model predictive control, a very popular optimization-
based control scheme is introduced. Afterward, different theory-driven approaches that
allow extending the application of model predictive control to the distributed domain
are discussed. The section is concluded with an introduction to a more conventional,
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Figure 1.1: Impressions from experiments and simulations on cooperative transportation
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graph-algebraic approach to distributed control, which is useful for comparison purposes.
Building upon these foundations, Chapter 4 introduces, in rather general terms and based
on defining features of distributed cooperative behavior, the conceptual framework and
distributed system architecture later applied to the benchmark problem. Moreover, a
custom robot design, devised for this thesis’s requirements, is introduced, including some
insights from building a mechanical model of the robot. It is then the purpose of Chapter 5
to develop the methods that allow solving concrete tasks within the framework from the
previous chapter, with a focus on the needs of the transportation problem. Distributed
optimization and distributed model predictive control become the key techniques to be
used within the approach. Furthermore, local and global navigation schemes are devised
to allow a safe navigation of the robots around the object as well as the planning of
collision-free paths to transport the object through obstacle-ridden environments. While
some of the methods developed are analyzed and put to the test right away, it is Chapter 6
that lets all methods work in tandem for cooperative transportation. At first, the devised
transportation scheme is analyzed based on simulations, focusing on specific aspects in
a well-controlled environment without unknown disturbances interfering. Subsequently,
experiments using the custom-built robotic hardware show whether the findings extend to
the physical domain. In addition, by means of large-scale simulations, the transportation
through obstacle-ridden environments is investigated. Finally, the thesis’s findings and
contributions are summarized in the concluding chapter, providing directions into which
subsequent research endeavors may venture.
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Chapter 2

Fundamentals from Modeling

Automating real-world tasks by employing robotic agents needs hardware that is appropri-
ate to handle the task. The relationship between the approach to the task and the type of
hardware employed is reciprocal. If the hardware design is fixed, its limitations confine the
set of possible task solution schemes. In contrast, a clear understanding of the task’s phys-
ical requirements is essential for picking, refining, or designing a robot. As an immediate
consequence, the dynamic behavior of the robots employed needs to be well understood.
An accurate mechanical or mechatronical model is, therefore, essential. The model needs to
be simple enough to allow the timely calculation of long dynamic simulations, but accurate
enough to capture the aspects most critical for the setting. Identifying the latter is one of
the critical challenges to engineers working in the field. However, merely being able to
adequately describe the behavior of a mechatronical system is insufficient for robotics. For
a system to be considered ‘robotic’, it needs to operate in an automated manner, giving
rise to the decisive roles of automatic control and of algorithmics. Many control methods
directly rely on a mathematical model of the system and, even for those that do not,
control design can benefit significantly from a simulation-driven workflow. Yet, devising
algorithms that automate robotic behavior requires an entirely different notion of modeling.
Whereas dynamic mechanical models usually consist of differential or differential-algebraic
equations, algorithms for automated behavior need a mathematical description of the
robots’ environment, the task, and the information necessary for the task solution. Hence,
it is necessary to look at how the relevant information can be modeled, and how algorithms
work with the information to decide on the robots’ actions. Therefore, this chapter does
not only introduce the required aspects of mechanical modeling, but also considers the
modeling of information as necessary for the challenges found in this thesis. Starting
with mechanics, the framework of multibody system dynamics is introduced briefly. Some
notation introduced therein will prove useful for the description of motion throughout the
whole thesis. The subsequent section is devoted to the modeling of information, considering
graphs, paths, as well as polygons and convex polytopes as foundational building blocks for
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robotic task solution. Building upon these, a brief look at the mathematical representation
of the robots’ workspace concludes the chapter.

2.1 Mechanical Modeling – Multibody Systems

Building a dynamic model for mechanical systems can be divided into two subaspects,
kinematics and kinetics. Whereas kinetics studies the relationship between forces and
motion, kinematics deals with the pure description of motion. It introduces the necessary
formalisms, considers the description of motion in different kinds of coordinates and
reference frames, but it is oblivious to the cause of motion. As such, it is useful beyond
classical mechanics and can be considered its own field [BottemaRoth90] with applications
such as robotic motion planning, computer vision, and computer graphics. In distributed
robotics, each robot and potentially each of its sensors and actuators perceives or acts
with regard to its own sense of direction, motivating the usage of various reference frames
moving with the robots or with parts of them. However, tasks to be solved by the robots
and the fundamental axioms of kinetics are usually formulated with respect to an inertial
frame of reference. This makes transformations between different reference frames essential
and highlights the necessity of a clear notational convention to indicate the reference frame
a quantity is given in. To that end, assume that a quantity of interest z(t) ∈ R

3 shall
be analyzed, with t ≥ 0 denoting time. For instance, this quantity can be the position
of a specific point of a robot, such as its center of mass, or a velocity or acceleration.
It shall be given in the standard basis of a Cartesian coordinate system of an inertial
frame of reference KI. The notation αz(t) shall denote the same quantity expressed
in the basis of the moving reference frame Kα(t), with the mutually orthogonal basis
vectors eα

1 (t), eα
2 (t), eα

3 (t) ∈ R
3 of unit length. Generally, the absence of an identifier in

the upper-left superscript shall mean that the corresponding quantity is given in the basis
of KI. The notation α̌z(t) shall denote the quantity not only represented in the basis of the
frame Kα(t), but relative to its moving origin oα(t) ∈ R

3, e.g., α̌z(t) = αz(t) − αoα(t) for a
quantity describing a position. All considered coordinate systems shall be orthonormal and
right-handed. Therefore, there exists an orthogonal rotation matrix ISα(t) that transforms
the coordinates of a vector given in the basis of Kα(t) to a coordinate vector given in
the basis of KI, i.e., z = ISα(t) αz. Subsequently, for brevity, the time-dependency may
be omitted notation-wise if it does not cause ambiguities, e.g., Kα = Kα(t). Often, the
analysis of planar motion suffices. In such instances, the first two coordinates will be used
to describe the motion, disregarding the third coordinate.

This notation is useful to formulate mechanical models for a wide class of technical
systems. Usually, robots and many other technical systems consist of a set of individual,
coupled construction elements. An approach to derive an idealized model for systems
of this kind is the framework of multibody systems [SchiehlenEberhard14, Woernle16].
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Therein, the system is regarded as consisting of bodies that make up the whole mass of the
system, whereas the idealized elements coupling the bodies are assumed to be massless. If
deformations of the bodies are negligible, they can be modeled as rigid bodies. Then, the
system’s elasticity is concentrated in the coupling elements. If the system has a tree-like
structure without non-holonomic constraints, it is often possible to derive an ordinary
differential equation describing the dynamics of the system. Focusing on the latter case, for
a system consisting of nb rigid bodies, that are coupled so that the system has nf degrees
of freedom, the kinematics can be expressed in terms of a minimal set of nf independent
coordinates, so-called generalized coordinates q ∈ R

nf . They uniquely define the position
of every point of the system. In the first step, each body i ∈ {1, . . . , nb} is described
kinematically by the position of its center of mass ri(q) and the rotation matrix ISBi

(q).
Therein, KBi

is a body-fixed frame with its origin located in ri(q). The angular velocity
vector ωi can be inferred from the skew-symmetric matrix ω̃i = IṠBi

IST

Bi
by means of

the relationship ωT

i =
[

(ω̃i)3,2 (ω̃i)1,3 (ω̃i)2,1

]

. This allows to express the translational
acceleration ai and the angular acceleration αi of each body in the form

ai = JT,i(q, t) q̈ + āi(q, q̇, t), (2.1)

αi = JR,i(q, t) q̈ + ᾱi(q, q̇, t) (2.2)

with the Jacobian matrices JT,i, JR,i and the local accelerations āi, ᾱi. These expres-
sions can be used in the Newton and Euler equations to formulate a kinetic descrip-
tion [SchiehlenEberhard14]. Isolating each body of mass mi, this results in

mi ai = f a
i + f r

i , (2.3)

Ji αi + ω̃i Ji ωi = lai + lri . (2.4)

Therein, the moment of inertia matrix Ji is given with respect to the corresponding body’s
center of mass. The vectors f r

i , lri comprise the reaction forces and moments acting on
the ith body, and f a

i , lai denote the applied forces and moments, respectively. In the
following, it is assumed that the applied forces and moments do not depend on the reactions
and that they may only depend on q, q̇, and time t. Equations (2.3), (2.4) still contain
the unknown reactions, although, in many applications, one is solely interested in the rigid
body motions. The equations of motion, devoid of the reactions, can be established with
the d’Alembert-Lagrange principle [SchiehlenEberhard14]. For the considered multibody
system and with the virtual displacements δri = JT,i δq and virtual rotations δsi = JR,i δq,
this takes the form

nb∑

i=1

(

(f a
i − mi ai)

T δri + (lai − Ji αi − ω̃i Ji ωi)
T δsi

)

= 0 ∀q (2.5)

=⇒ δqT

nb∑

i=1

[

JT

T,i (mi ai − f a
i ) + JT

R,i (Ji αi + ω̃i Ji ωi − lai )
]

= 0 ∀q. (2.6)
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Using the fact that the virtual generalized displacements δqj , j ∈ {1, . . . , nf}, are mutually
independent, the equations of motion are obtained and can be written in the form

M(q, t) q̈ + k(q, q̇, t) = fga(q, q̇, t), (2.7)

representing a nonlinear ordinary differential equation for q(t). Therein, M ∈ R
nf×nf

is the symmetric and positive definite mass matrix, k ∈ R
nf denotes the vector of the

generalized gyroscopic forces, and fga ∈ R
nf is the vector of the generalized applied forces.

The multibody dynamics fundamentals described above suffice for the applications con-
sidered in this thesis. A more extensive treatment of multibody systems can be found in
the books [SchiehlenEberhard14] and [Woernle16]. Furthermore, the formalism described
here can be extended nicely to incorporate elastic bodies subject to small deforma-
tions [SchwertassekWallrapp99]. For the large-deformation case, different formalisms are
prudent [Shabana97, Shabana20]. These could, e.g., be worthwhile to simulate robots
handling soft objects that undergo large deformations.

For model-based control, it is often critical to employ a model posing as little computational
demand as possible. Therefore, one often tends to neglect even effects that can significantly
influence the model’s character or computational complexity, such as friction or exact
contact descriptions, hoping that feedback control can compensate for the modeling
errors made. Hence, in many applications, for the design of nominal, model-based
controllers, an even more lightweight linearized dynamics is employed. Often, the control
input u ∈ R

nu , that is governed by the controller, consists of a subset of the applied forces
and moments. Extracting those from the vector of generalized forces, it is possible to write
the dynamics (2.7) in the form

M(q, t) q̈ + k(q, q̇, t) = f̄ga(q, q̇, t) + B̄(q, t)u. (2.8)

Linearizing around the operating point defined by qo, q̇o, q̈o, uo with ∆q := q − qo,
∆u := u − uo, the linearized equations of motion

Mℓ (t) ∆q̈ + Pℓ (t) ∆q̇ + Qℓ (t) ∆q = h(t) + Bℓ (t) ∆u (2.9)

with

Mℓ (t) = M (qo, t), (2.10)

Pℓ (t) =
∂k

∂q̇
(qo, q̇o, t) − ∂f̄ga

∂q̇
(qo, q̇o, t), (2.11)

Qℓ (t) =
∂k

∂q
(qo, q̇o, t) − ∂f̄ga

∂q
(qo, q̇o, t) − ∂B̄

∂q
(qo, t)uo +

∂M

∂q
(qo, t) q̈o, (2.12)

h(t) = fga(qo, q̇o, t) + B̄(qo, t)uo − M(qo, t) q̈o − k(qo, q̇o, t), and (2.13)

Bℓ (t) = B̄(qo, t) (2.14)
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is obtained. Usually, qo and uo are chosen so that they are a steady state-input pair,
meaning that h(t) = 0. Control engineering, system analysis, and model-based control
design usually rely on a state-space representation of the examined system. For instance,

for the linear dynamics (2.9), with the state x :=
[

∆qT ∆q̇T

]
T

and in the case of h(t) = 0,
this yields a state-space representation of the form

ẋ =




0 I

−M−1
ℓ Qℓ −M−1

ℓ Pℓ





︸ ︷︷ ︸

=:A

x +




0

M−1
ℓ Bℓ





︸ ︷︷ ︸

=:B

∆u. (2.15)

Therein, I is the identity matrix. In addition, an output y ∈ R
ny may be defined as a

function of the state and input, describing, e.g., measurements available to observers or
controllers. In the linear case, the output takes the form

y = Cx + D∆u. (2.16)

2.2 Information Modeling

Robotic systems are employed to automate tasks. Except for the most simple, static
tasks, this requires considering and processing information gathered at system runtime to
automatically deduce the robotic behavior appropriate in the current situation. Usually, the
gathered information needs to be reprocessed to obtain a representation that is adequate
for decision-making algorithms to operate on. In a field as diverse as robotics, a disquisition
on information modeling can only be incomplete, with this section merely focusing on
the aspects relevant to the model example of cooperative object transportation. Still, the
foundations described are useful for a wide variety of tasks posed, among them tasks that
include navigation or the handling of objects, with most concepts being useful far beyond
robotics. The first subsection introduces graphs, which find application, e.g., in navigation
and distributed control. The second subsection deals with the definition of paths, which
may be deduced from a navigation graph. The third subsection introduces polygons and
convex polytopes, which can be useful to describe objects to be handled, the workspace
environment, or constraints in optimal control and optimization. Finally, it is described
how environments, and the navigation therein, can be dealt with algorithmically.

2.2.1 Graphs

A graph is an abstract mathematical concept and can be defined as a tuple of a set of
nodes V and a set of edges E [GodsilRoyle01, HartNilssonRaphael68]. Yet, illustrations of
graphs can be found in many places of daily life, e.g., in maps of subway systems. Thus, in
some important applications, the nodes represent points of interest on a map, e.g., locations
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Figure 2.1: Illustration of an undirected and of a directed graph, with the set of nodes V =
{1, 2, . . . , 5} and the sets of edges E = {e1, e2, . . . , e6}, and

⇀

E = {⇀
e1,

⇀
e2, . . . ,

⇀
e6}, respectively

to be inspected by a robot, or subway stations in a city. An edge signals that one can directly
move between the two points of interest connected by the edge, without passing through
another node. In a different interpretation, each node represents a robot, and the edges
embody the possibility of communication between the robots. In literature, graph nodes are
also called vertices [GodsilRoyle01]. In this thesis, vertices will appear in the description of
polytopes, so the denomination as nodes helps to prevent equivocality. In some applications,
communication might be unidirectional for technical reasons, resembling a one-way street
in a road network, whereas, in other applications, each communication channel may be
bidirectional by nature. Therefore, it makes sense to distinguish between directed and
undirected graphs and edges. For a directed graph

⇀

G =
(

V ,
⇀

E
)

, the set of edges
⇀

E ⊆ V × V
is a set of ordered pairs of nodes, defining a sense of direction by their order. For vi, vj ∈ V ,
the edge (vi, vj) ∈

⇀

E leads from vi to vj. This kind of edge is called a directed edge or
arc. In contrast, the set of edges E of an undirected, or simple, graph G = (V , E) contains
unordered pairs of nodes. In this thesis, only graphs without self-loops are considered, i.e.,
it is assumed that for all (vi, vj) ∈ E it holds that vi 6= vj. An undirected graph G = (V , E)
may be written as a directed graph

⇀

G =
(

V ,
⇀

E
)

by replacing each undirected edge with

two directed edges so that {v1, v2} ∈ E ⇐⇒ (v1, v2) ∈
⇀

E ∧ (v2, v1) ∈
⇀

E for all pairs of
nodes v1, v2 ∈ V. In a directed graph, a successor vj of node vi is a node for which there
exists an edge (vi, vj) ∈

⇀

E , meaning that it can be reached from vi by following a directed
edge that leads from vi to vj. Usually, graphs are illustrated by depicting nodes as circles,
directed edges as arrows, and undirected edges as lines, see Figure 2.1. Such an illustration
need not encode any spatial information about the nodes since a graph only encodes the
relationship between the nodes. Hence, there are many possible illustrations of a graph.
However, for some applications, e.g., path planning and navigation, it can be instructive
to draw the nodes at their physical locations.

Each node vi, vj of an edge ⇀
e = (vi, vj) or e = {vi, vj} is said to be incident with the edge.

Two nodes are adjacent if they are incident with the same edge. Therefore, adjacency
describes a relationship between two nodes, whereas incidence describes a relationship
between a node and an edge. An undirected graph is complete if all nodes are adjacent.
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For graphs G = (V , E) or
⇀

G =
(

V ,
⇀

E
)

, a (graph-theoretic) path is a sequence v1, . . . , vn of

nodes vi ∈ V with {vj, vj+1} ∈ E ∀j ∈ {1, . . . , n − 1} or (vj, vj+1) ∈
⇀

E ∀j ∈ {1, . . . , n − 1},
respectively. An undirected graph is connected if any two nodes are connected by a path.
For some applications, such as finding shortest paths, it is useful to introduce so-called
edge weights that may, for instance, encode the Euclidean distance between the physical
representations of adjacent nodes. Hence, in a weighted directed graph, there exists a
mapping w̌ :

⇀

E → R assigning a weight to each edge.

While illustrations of graphs as in Figure 2.1 are intuitive and can already be very useful
when devising algorithms, it is also possible to represent graphs in the form of matrices.
These matrices’ algebraic properties relate to properties of the graph, allowing graph
interpretations of well-known algebraic results. An encompassing algebraic treatment
of graphs can be found in [GodsilRoyle01], with the following delineations being limited
to this thesis’ needs. A matrix that will later on prove important for control design is
the incidence matrix B⇀

G ∈ R
nV ×nE of a directed graph

⇀

G =
(

V ,
⇀

E
)

with nV := |V| nodes,

nE :=
∣
∣
∣

⇀

E
∣
∣
∣ edges, the node set V = {v1, . . . , vnV

}, and the edge set
⇀

E = {⇀
e1, . . . ,

⇀
enE

}. Its
entries are given by

(

B⇀
G

)

i,j
=







1 if ∃ v̂ ∈ V : (v̂, vi) = ⇀
ej,

−1 if ∃ v̂ ∈ V : (vi, v̂) = ⇀
ej,

0 else.

(2.17)

For instance, for the directed graph from Figure 2.1, this yields

B⇀
G =













−1 0 0 −1 0 0
1 0 0 0 −1 0
0 −1 −1 0 1 0
0 0 1 1 0 −1
0 1 0 0 0 1













. (2.18)

Each of its columns corresponds to an edge and each of its rows to a node, with the entry 1
indicating that the edge ends at the node, and a −1 indicating that it starts at the node.
Therefore, each column of the matrix has exactly two entries that sum to zero. Hence,
with the vector of ones 1nV

∈ R
nV , it holds that B

T
⇀
G 1nV

= 0. Whereas the incidence
matrix encodes the relationship between edges and nodes, the so-called adjacency matrix
encodes the relationship between nodes. Subsequently, only the adjacency matrix A⇀

G of a

weighted directed graph
⇀

G is relevant. Its entries are defined as

(

A⇀
G

)

i,j
=







w̌(vi, vj) if (vi, vj) ∈
⇀

E ,

∞ else.
(2.19)

Sometimes it makes sense to work with directed versions of undirected graphs. In this vein,
an oriented graph [GodsilRoyle01] is a graph that is obtained from an undirected graph
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by replacing each undirected edge with an arbitrarily directed one. An orientation of a
graph shall be the mapping that maps an undirected graph to an oriented graph. Indeed,
the directed graph from Figure 2.1 can be seen as an oriented graph since there exists an
orientation that maps the undirected graph in the figure to the directed one. While there
may be many possible orientations of a graph, some key properties of oriented graphs do
not depend on the specific orientation. For instance, if the underlying undirected graph is
connected, the rank of the incidence matrix of any corresponding oriented graph is given
by rank

(

B⇀
G

)

= nV − 1 [GodsilRoyle01]. As will become clear in Section 3.3, there exists
a physical interpretation of this fact in formation control, relating to the intuitive notion
that a given relative positioning of a group of robots defines the robot positions up to an
undefined, common translation.

Maybe the most intuitive application of graphs in robotics and beyond is navigation.
The problem of finding a suitable path through an environment may be reduced to a
map in the form of a weighted graph – similar to how a human driver would plan a
road trip by finding and memorizing roads (edges) that connect certain cities (nodes) in
a road network. Often, one is interested in a shortest path, meaning that, among all
possible paths leading from the start to the goal, the sum of the chosen edges’ weights
is minimal. The edge weights can, but need not, be distances. They might also refer
to expected travel time or energy consumption along the edge. Due to its usefulness in
robotic navigation and to provide an algorithmic example on how to operate on graphs,
the remainder of this subsection is devoted to the solution of the shortest path problem.
Subsequently, it is assumed that the graph is directed, connected, and that all edge weights
are positive, i.e., w̌ :

⇀

E → R+. By virtue of the physical meaning of the graph, these
assumptions are not very restrictive. There exist some very well-known algorithms to
calculate shortest paths in this kind of graph, e.g., Dijkstra’s algorithm [Dijkstra59] and
the A⋆ algorithm [HartNilssonRaphael68], which both guarantee that the shortest path
is found. Both of these algorithms are so-called greedy algorithms. Beginning at the
start node, when deciding which node to consider next, they greedily pick the node that
seems to be an optimal choice with regard to a cost function. The algorithms memorize
the information necessary to reconstruct the shortest currently known path to each node
previously considered. The length of that path is also recorded. The cost function is
designed to reduce the number of nodes that have to be considered to find the shortest
path to the goal. In Dijkstra’s algorithm, a node’s current cost is equal to the length of
the shortest previously discovered path from the start to the node in question. The edge
weights needed to calculate this cost can be read directly from the adjacency matrix. The
A⋆ algorithm adds a heuristic cost term that is designed to lower-bound the length of the
shortest path from the candidate node to the goal node. Indeed, under a mild assumption
on this additional heuristic cost term [HartNilssonRaphael68], it can be proven that the
A⋆ algorithm is in some sense optimal with regard to the number of nodes considered to find
a shortest path. In navigation, with the edge weights denoting Euclidean distances between
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the locations represented by the nodes, this assumption is, e.g., fulfilled if the heuristic
cost is the Euclidean distance between the candidate node and the goal node. Then, no
other algorithm operating on the same set of information can consistently consider fewer
nodes than the A⋆ algorithm to reliably find a shortest path [HartNilssonRaphael68]. For
this reason, it is still widely applied and cited in all kinds of works that need to solve
the shortest path problem – and for the same reason, it is employed in this thesis in all
instances where shortest paths are of use. Example 1 gives an illustratory example on how
the algorithm operates.

Example 1: The Shortest Path Problem and the A⋆ Algorithm

1

2 3

4

5

⇀
e1

√
5

⇀
e4

3

⇀
e5

2

⇀
e2

3
⇀
e3 2 ⇀

e6

√
13

Without delving into implementational de-
tails, the A⋆ algorithm can be readily under-
stood by tracing its steps in a small example
graph. Consider the graph displayed on the
right-hand side, which is a weighted version
of the directed graph from Figure 2.1. The
edge weights are written alongside the edges. They are proportional to the Euclidean
distances between the node centers as printed on paper, e.g., w̌(⇀

e1) =
√

5. The goal
is to find the shortest path from node 1 to node 5. The Euclidean distance from a
candidate node to the goal node is used as the heuristic cost term. The algorithm
maintains a set of so-called open nodes that is initialized to contain only the start
node, which is node 1 in the example. Similarly, a set of closed nodes, which is
empty initially, contains nodes that will not be considered anymore. Each iteration
of the algorithm starts by considering an open node with lowest cost, preferably
the goal node if it qualifies. In the example’s first iteration, node 1 is considered.
If the candidate node is the goal node, the algorithm terminates by moving it to
the set of closed nodes. If not, the algorithm adds all non-closed successor nodes of
the candidate node to the set of open nodes and calculates all successor nodes’ cost
function values. Furthermore, it memorizes the individual edges that lead to each
successor if the shortest path to the successor via the candidate node is shorter than
any corresponding path discovered previously. The iteration concludes by moving
the candidate node from the set of open nodes to the set of closed nodes. Thus,
after the first iteration, nodes 2 and 4 are in the set of open nodes, with costs

√
5 + 5

and 3 +
√

13, respectively. Since node 4 has lower cost, it is the next candidate
node. It only has one successor node, which is the goal node. The algorithm adds
it to the set of open nodes and notes that edge ⇀

e6 is used to reach it. After the
second iteration, nodes 2 and 5 are in the set of open nodes, but the goal node 5
has the lowest cost, and hence it is the new candidate node. Consequently, the
algorithm terminates. The shortest path can be reconstructed by backtracking
from node to node via the memorized edges, yielding the shortest path ⇀

e4,
⇀
e6. The
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drawings below illustrate the situation at the ends of the first two iterations of the
A⋆ algorithm. Closed nodes are hatched in orange, open nodes are dotted in green,
and memorized edges are drawn in blue. The cost values of nodes for which they
have been calculated are printed in the node’s color next to the respective node.
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2.2.2 Paths, Trajectories, and Motion Planning

In robotics, the term path usually does not refer to a graph-theoretic path as introduced in
the preceding subsection. Instead of a sequence of distinct nodes, it refers to a continuous
function Γ : I ⊆ R → Y ⊆ R

d that maps a path parameter from an interval I to a state
or output of a robotic system. When thinking of a robot modeled as in Section 2.1, a
point on the path may, e.g., refer to a specific value of the generalized coordinate vector,
thereby defining the desired configuration or pose of the robot. Therefore, in robotics
literature, the set of all admissible values of the generalized coordinates is called the
configuration space CS [LynchPark17]. In some applications, there can be multiple possible
configurations, i.e., values of the generalized coordinate vector, that result in the same
path point. This can be the case for the end effector of a robotic manipulator. Two
illustrative examples can be found in Example 2.

Example 2: Paths

-10 -5 0 5 10
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0
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]

The two images above show paths in two different applications in the field of
robotics. The left image shows a scenario that may appear in cooperative object
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transportation in which a rectangular object shall be transported through an
environment that contains obstacles, which are depicted in blue. A possible path
for the object is depicted in orange, with the object orientations along the path
illustrated by the object shape drawn in translucent gray. The path leads from the
upper left to the upper right. The image on the right-hand side illustrates a path,
drawn in orange, to be followed by a point of a robotic manipulator consisting
of two articulated robotic arms depicted as thick straight lines. The path in the
transportation case incorporates both position coordinates as well as a coordinate
related to the orientation of the object. For every point along the path, there
is exactly one fitting configuration of the object. In contrast, there are up to
two configurations for every path point in the example on the right-hand side, as
indicated by the dashed configuration of the robotic manipulator. This kind of
illustration does not give any information on the parameterization of the path. A
possible parameterization of the object path is shown in the plots below. The path

is described by the function Γ : [0, ∞) → R
3, s 7→

[

Γ1(s) Γ2(s) Γ3(s)
]
T

. The first
two coordinates Γ1, Γ2 refer to the x- and y-coordinates of the object’s position,
respectively, whereas the third coordinate Γ3 refers to the object’s orientation by
giving its rotation angle relative to the object’s initial position.
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Insofar, it has not been discussed how the parameterization of the path should be chosen.
Depending on the use case, specific choices might be practical. For instance, for a path
in the plane or three-dimensional space, an arc-length parameterization can be intuitive
since it introduces a natural notion of distance into the parameterization. This is more
intricate if the path coordinates contain spatial and rotational quantities since there is
no common notion of distance for the two. By itself, a path is a purely geometric object
and does not include any notion of time. Henceforth, it does not describe a motion per se.
However, it may be parameterized in time, in which case it is usually called a trajectory.

Subsequently, assume that a path shall be planned in a workspace W ⊆ R
n, with n = 2

or n = 3, that contains obstacles represented by the closed set O ⊂ W. The geometry
of the robot in the configuration defined by the generalized coordinate q shall be given
by T (q) ⊆ R

n. The robotic system’s output that shall track the path shall be given
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by y(q) ∈ Y ∀ q ∈ CS. With these quantities, the task of path planning can be defined
as finding a path Γ : I = [a, b] ⊆ R → Y from some starting point s̄ =: Γ(a) ∈ Y to
a goal point ḡ =: Γ(b) ∈ Y so that there exists a continuous function f : [a, b] → CS

with Γ(λ) = y(f(λ)), T (f(λ)) ∩ O = ∅ ∀ λ ∈ [a, b]. The latter requirement ensures that,
geometrically, the path can be followed by the robot without collisions with the obstacles.
Therefore, the environment can be seen as a constraint to path planning. However, this
definition of path planning does not consider the dynamics of the robot or object that
shall follow the path. For instance, due to inertia and limitations of the actuation, it
might be impossible to find control inputs that let the robot follow the path with finite,
non-vanishing velocity. Therefore, one may require that there exists a trajectory following
the path that can actually be executed. This means that the trajectory is a solution of the
differential equation describing the robot dynamics for suitable, admissible control inputs.
For this reason, this requirement on path planning is sometimes referred to as a differential
constraint [KavrakiLaValle16]. In this interpretation, it is not a purely geometric task
anymore, and it may be subsumed under the more general term of motion planning.

Due to the vastly different dynamics that may be considered, motion planning is a very
manifold task. Even the underlying, purely geometric problem can be highly complex,
with general, exact solutions sometimes being very arduous to obtain, potentially to
the point of intractability [KavrakiLaValle16, Sharir89]. Hence, a lot of research fo-
cuses on specialized schemes that target specific types of environments or configuration
spaces [KavrakiLaValle16]. In the case of general motion planning, the investigation is
often restricted to specific dynamics or concentrates on the local, reactive avoidance of
obstacles [MinguezLamirauxLaumond16]. Therefore, this section purposefully refrains
from looking at specific path, trajectory, or motion planning algorithms since they should
usually be tailored to the specific problem at hand.

2.2.3 Convex Polytopes and Convexity

Convexity of sets and functions is highly relevant to optimization and optimization-based
control. Moreover, specific kinds of convex sets are highly useful in geometric modeling. A
set is convex if the closed line-segment connecting any two points of the set is in the set.
For a convex set M ⊆ R

d, a function f : M → R is said to be convex if

f(λa + (1 − λ) b) ≤ λ f(a) + (1 − λ) f(b) ∀ a, b ∈ M, λ ∈ [0, 1] , (2.20)

which means that the line segment between the points
[

aT f(a)
]
T

and
[

bT f(b)
]
T

lies
above the function graph for all a, b in the domain of f [BoydVandenberghe04]. It is
strictly convex if

f(λa + (1 − λ) b) < λ f(a) + (1 − λ) f(b) ∀ a, b ∈ M, a 6= b, λ ∈ (0, 1) . (2.21)

An illustration of these definitions is provided in Figure 2.2.
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Figure 2.2: Illustration of a convex set M and of a (strictly) convex function f : R → R

Convex polytopes, as a special kind of convex sets, deserve a separate examination since
they can be represented by a finite set of linear inequalities, making them amenable to
algorithmic treatment. Nevertheless, they are general enough to represent or approximate
a useful variety of sets. This portends their usefulness in optimization, computer graphics,
and simulations. Even certain non-convex sets can be represented as the union of convex
polytopes. Unlike convexity, the formal definitions and nomenclature of polytopes and
related concepts are inconsistent and contradicting across different authors and research
fields [GrünbaumShephard69, O’Rourke98, BoydVandenberghe04]. In this thesis, a convex
polytope P is defined as the intersection of finitely many closed half-spaces. In d dimensions,
this can be written as

P =
nh⋂

i=1

{z ∈ R
d | cT

i z ≤ di} = {z ∈ R
d | Cz ≤ d} (2.22)

with 0 < nh < ∞, ci ∈ R
d, and the rows of the matrix C ∈ R

nh×d being cT

i , i = 1, . . . , nh.
Here and in the following, inequalities in vector equations denote element-wise inequalities.
If non-empty and of dimension d − 1, the intersection of a hyperplane {z ∈ R

d | cT

i z = di}
with the boundary of the polytope gives a facet of the polytope. Individual points obtained
by intersecting facets are called vertices. A polytopic set or polytope shall denote a set
that can be represented as the union of a finite number of convex polytopes. Hence, it may
be non-convex, but, if it is bounded, its boundary is composed of finitely many planar,
bounded, convex facets. A bounded two-dimensional polytopic set is called a polygon.

For bounded convex polytopes, there exist two representations that are very useful in
different circumstances. The representation used in the definition above is referred to as
the half-space representation. However, it is also possible to represent a bounded convex
polytope as the so-called convex hull of a finite set of points. The convex hull of the
set {v1, . . . ,vnc

} ⊂ R
d is defined as the convex combination of all the points in the set,

i.e.,

convhull ({v1, . . . ,vnc
}) =

{
nc∑

i=1

λi vi

∣
∣
∣

nc∑

i=1

λi = 1, λi ≥ 0 ∀ i ∈ {1, . . . , nc}
}

. (2.23)

This kind of representation of a bounded convex polytope is called the vertex representation.
This is due to the fact that the set of points to be convexly combined must at least contain
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Figure 2.3: Illustration of the vertex and half-space representations of a bounded convex
polytope P. The polytope is the convex hull of all points depicted in blue, although the
dark blue points, which are the vertices of P , suffice to describe P as their convex hull.

the vertices of the polytope. An illustration of the vertex and half-space representations
of a bounded convex polytope is given in Figure 2.3.

If a polytope represents an object to be handled by robots or obstacles in the workspace,
checking whether a point is in the polytope is a very useful elementary operation that may
be executed many times to detect collisions in path planning and simulation. Therefore,
the efficiency of such an operation is paramount. For a convex polytope in half-space
representation as in Equation (2.22), this can be done by checking whether Cz ≤ d holds
for the point z that shall be probed. Being amenable to vectorized evaluation, this can be
executed efficiently on many modern processing units. However, objects, obstacles, and the
like can be non-convex and, therefore, not representable in half-space representation. This
warrants to look at strategies to subdivide non-convex polytopes into a set of convex ones.
Due to the nature of many applications, this task’s treatment is often restricted to two or
three dimensions. For the applications in this thesis, two dimensions suffice and subsequent
disquisitions are limited to that case. In two dimensions, a non-convex polygon can be
represented as the union of a finite number of triangles, which is called a triangulation of
the set. A very well-known triangulation that can be calculated efficiently is the Delaunay
triangulation of a set of points. It can directly triangulate a convex polygon when supplied
with the polygon’s vertices. In the case of a non-convex polygon, the triangulation covers
the polygon’s convex hull. The Delaunay triangulation maximizes the smallest angle of
the triangles among all possible triangulations [BergEtAl08], which can benefit numeric
algorithms operating on the triangulation [Sibson78]. The triangulation can be interpreted
as a geometric realization of a graph with the triangle vertices as graph nodes and the
straight-line segments as edges. To adequately triangulate non-convex polygons, it would
be useful if all facets of the polygon would correspond to an edge in this graph. Then,
each triangle’s interior would either be a subset of the polygon or it would lie outside
the polygon. Hence, a subset of the triangles would be a triangulation of the non-convex
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Figure 2.4: The Delaunay triangulation of the dark-gray object’s vertices is given on the
left-hand side. A constrained Delaunay triangulation, containing all the edges of the object,
is given on the right-hand side.

polygon. However, in general, not every facet has a corresponding graph edge. But
there exist techniques that allow to enforce that specific edges are part of the graph.
The result need not have the favorable numerical properties of a Delaunay triangulation
anymore, but there exist calculation techniques that try to retain the properties as far
as possible [Chew89, Sloan93]. In literature, this kind of triangulation is referred to as a
constrained Delaunay triangulation. Figure 2.4 illustrates the Delaunay triangulation and
its constrained counterpart for an object shape as a group of robots could transport it.

Computational geometry, for instance in the form of triangulation, as well as convex poly-
topes can each be considered their specialized fields of research [O’Rourke98, Grünbaum03].
Hence, relying on them in robotics algorithms allows to benefit from the manifold results
in these areas. Later, convex polytopes will resurface in optimization-based control and
organization to represent constraint sets. While Figure 2.4 gives some insight into rep-
resenting objects handled by robots, modeling the robots’ workspace warrants further
discussion.

2.2.4 Workspace Modeling

The concept of the workspace has already appeared during path and motion planning
in Section 2.2.2, with the aim to devise paths or trajectories that evade obstacles in
the workspace environment. The successful accomplishment of this task necessitates a
mathematical model of the workspace’s geometry or of the obstacles therein. Such a
mathematical representation is also necessary for simulation purposes, e.g., for collision
detection. Similar to the task of motion planning discussed above, there is an abundance
of approaches resulting from a variety of application-specific considerations. For instance,
these may include the kind of robot and obstacles considered, and whether the workspace
model needs to be built in real time based on an evolving set of information or whether it can
be built in a preprocessing step. In particular, integrating additional sensor information,
such as point clouds from light detection and ranging sensors, can pose a significant
challenge for some approaches but can be straightforward for others. One possible
approach is to represent the obstacles in the workspace as polytopic sets [O’Rourke98].
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Alternatively, the workspace may be discretized into a set of volumetric cells, with each cell
encoding information on whether the corresponding volume is considered to be occupied by
obstacles [HornungEtAl13]. Nevertheless, with regard to the algorithmic processing of the
workspace, some concepts can be found that can be useful irrespective of how exactly the
workspace is modeled. Many approaches try to construct a connectivity graph [Sharir89]
based on the information encoded in the model of the workspace [KavrakiLaValle16,
O’Rourke98]. Nodes in the connectivity graph represent finitely many positions in the
workspace in which the robot can be situated without collisions. Edges between nodes
signify that the robot can move freely between the nodes incident with the edge. There
are many possible design policies for such a graph. For instance, it can be designed to
only contain nodes that are part of shortest paths around the obstacles. Alternatively,
nodes may be placed as far away as possible from obstacles to obtain paths with maximum
clearance. It may be highly non-trivial to find appropriate collision-free positions in
the workspace and to determine between which of those it is possible to move without
collisions [KavrakiLaValle16, O’Rourke98]. To solve this, a concept common to many
approaches is the construction of a map in which the obstacles in the environment are
enlarged by a certain amount so that the remaining free space corresponds to collision-
free positions. For instance, if the robot has a circular footprint, the obstacles are
enlarged by at least the robot radius. A simple, practical example in that regard is
illustrated in Excursus 1. In a more general setting, beyond the immediate needs of
this thesis, the Minkowski addition is a formal concept for the addition of sets and
therefore useful in obtaining and describing enlarged representations of obstacles in an
exact fashion [O’Rourke98]. This is true in particular when the obstacles and the robot are
represented as convex polytopes since the Minkowski addition of convex polytopes gives
a convex polytope [Schneider93]. While the theory and challenges described so far are
of relevance to much of robotics, some of the theoretical foundations most characteristic
to cooperative distributed robotics have not yet been touched upon. In particular, these
include how to organize and control the robots in a distributed fashion so that each robot
makes decisions that serve the common goal.

Excursus 1: Connectivity Graph of a Polygonal Workspace Model

This excursus considers a mobile robot that moves in the plane and that is equipped
with a light detection and ranging sensor, giving measurements of the distances
to surrounding surfaces. The goal is to obtain a connectivity graph that can be
used to calculate a shortest path from a starting to a goal position. Here, the
first step is to construct a polygonal model of the obstacles based on a set of
distance measurements. Following [EbelSharafian ArdakaniEberhard17b], obstacles
may be represented by sets of rectangles as a special case of a convex polygon.
To that end, the set of measured points is augmented by adding copies of the
measured points further away in radial direction, assuming some minimal obstacle
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thickness. The resulting set is partitioned into multiple subsets, e.g., if the differ-
ence between adjacent measurements’ distance values exceeds a certain threshold,
indicating that they might belong to two different obstacles. For each subset, a
rectangle of minimal area containing all points of the subset is calculated. Enlarged
versions of these rectangles are calculated to account for the finite robot radius.
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A possible result is illustrated on the right in
the upper picture. The obstacles are drawn
in dark gray, simulated sensor measurements
are indicated by red crosses along the obstacle
edges, with the resulting enlarged rectangles
depicted in red. The encircled cross marks
the sensor position. In the example, having
included three further sets of measurements,
a connectivity graph, designed to calculate
shortest paths, is constructed. All rectangle
vertices not contained in any other enlarged
rectangle are added as nodes to the graph.
Then, all possible edges between the nodes
are added to the graph as long as they do
not intersect any enlarged rectangle’s interior.
This is based on the observation that shortest
paths around polytopes lead through their
vertices. The resulting connectivity graph is
illustrated in the lower image with the graph
drawn in blue and the start and goal nodes in
orange and green, respectively. The shortest
path between them is highlighted with green
lines. Evidently, without a priori information
on the number of obstacles and on how they
are measured, the resulting map’s complexity is not upper-bounded. In contrast,
for a map consisting of a fixed amount of volumetric cells, the complexity is upper-
bounded, making it easier to guarantee real-time operation.
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Chapter 3

Fundamentals from Distributed

Control and Organization

Much of the perceived quality of a robotic system performing physical tasks is defined
by how accurately it can execute the desired motions or exert the right levels of forces
and, hence, by the automatic control methods employed to solve these tasks. Distributed
robotics poses an additional challenge since the motions of multiple cooperating robots
need to be coordinated. Beyond dynamic control, the effectiveness of a distributed robotic
system can heavily depend on organizational considerations, e.g., how many robots to
employ, or which robot to employ for which subtask, which is more intricate if these
considerations have to be decided upon in a distributed fashion. Usually, compared to
dynamic control tasks, organizational matters can be dealt with on a slower time-scale,
often relying on a static or quasi-static problem description, without considering any
kind of dynamic model. Fortunately, solution approaches to both areas share a common
foundation, which is optimization. As it will become apparent in the problems studied
in this thesis, formulating robotic tasks in terms of optimization problems can be very
intuitive and introduces a natural separation between formulating and solving the problem.

The chapter starts by introducing the concepts from optimization most essential for the
thesis. Furthermore, a concrete optimization method is introduced in the form of particle
swarm optimization, which can be useful to solve very general organizational optimization
problems with little assumptions on their structure and properties. The subsequent section
introduces an optimization-based control approach popular in theory and application,
which is model predictive control (MPC). Scientific development in the area has enabled
the solution of the underlying problems in a distributed fashion. Therefore, subsequently,
some perspective on the research field of distributed MPC (DMPC) is given, providing
notions and categories to distinguish the various kinds of schemes that have been proposed
in the theoretically oriented literature. As yet, DMPC seems to be more of a theory-driven
research field, with applications in distributed robotics often employing other kinds of
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control schemes. Therefore, Section 3.3 gives a brief introduction to a popular approach to
distributed control based on results from algebraic graph theory, which lays the foundations
for application-oriented comparisons between the two approaches, allowing to design an
approach appropriate for this thesis’ model task of cooperative object transportation in
Chapters 4 and 5.

3.1 Optimization

A general formulation for a constrained optimization problem can be given in the form

minimize
z∈Rn

c(z) (3.1)

subject to hm(z) ≤ 0, m ∈ {1, . . . , ni}, (3.2)

gj(z) = 0, j ∈ {1, . . . , ne}. (3.3)

Therein, z is the optimization variable, c : Rn → R is the cost function, and hm : Rn → R,
gj : Rn → R are the inequality and equality constraint functions, respectively. In total,
there are ni ≥ 0 inequality and ne ≥ 0 equality constraints. The feasible set F =
{z ∈ R

n | hm(z) ≤ 0, m ∈ {1, . . . , ni}, gj(z) = 0, j ∈ {1, . . . , ne}} is the set of values of
the optimization variable satisfying the constraints. The problem is said to be infeasible if
F = ∅, whereas the case of unconstrained optimization is recovered if F = R

n. Often, all
functions appearing in the optimization problem are smooth, opening up the problem to a
wide field of theory and numerical solution algorithms that have been developed over the
years, see, e.g., [NocedalWright06] for an encompassing treatise on the topic. Subsequently,
quantities corresponding to optimal solutions of optimization problems will be marked
by a star, with z⋆ being an optimal solution and c⋆ = c(z⋆) being the corresponding
cost. Analytically, an equality constraint ĝ(z) = 0 can be expressed equivalently by two
inequality constraints ĝ(z) ≤ 0, −ĝ(z) ≤ 0, although numerical optimization algorithms
tend to treat them differently [NocedalWright06]. If, for a ẑ ∈ F , an inequality constraint
holds with equality, i.e., hm(ẑ) = 0, the constraint is said to be active at that point. An
equality constraint is always active [BoydVandenberghe04]. The active set at a point ẑ is
the set of constraints that are active at ẑ, with an optimal active set being the active set
at a solution of the optimization problem [NocedalWright06].

In general, little can be said about the solutions of problem (3.1)-(3.3); most importantly,
even if the problem is feasible, it is not clear whether the problem has one or multiple
globally optimal solutions. Furthermore, it may have local optima that are not global, with
a point ẑ being locally optimal if it has lowest cost of all nearby feasible points, i.e., ∃ r > 0:
c(ẑ) ≤ c(z) ∀z ∈ F : ‖z − ẑ‖2 ≤ r. Very useful first-order optimality conditions are the so-
called Karush-Kuhn-Tucker (KKT) conditions [NocedalWright06, BoydVandenberghe04].
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To formulate them, the Lagrangian function

L(z,λ,µ) = c(z) +
ni∑

m=1

λm hm(z) +
ne∑

j=1

µj gj(z) (3.4)

is a useful quantity [BoydVandenberghe04], with λ ∈ R
ni and µ ∈ R

ne being the vectors of
the so-called Lagrange multipliers associated with the inequality and equality constraints,
respectively. Following [NocedalWright06], if the cost and constraint functions are contin-
uously differentiable and if the gradients of the constraints in the active set at a locally
optimal point ẑ are linearly independent, then there exist Lagrange multipliers λ̂, µ̂ that
fulfill the KKT conditions

∇zL (ẑ, λ̂, µ̂) = 0, (3.5)

hm(ẑ) ≤ 0 ∀m ∈ {1, . . . , ni}, (3.6)

gj(ẑ) = 0 ∀j ∈ {1, . . . , ne}, (3.7)

λ̂m ≥ 0 ∀m ∈ {1, . . . , ni}, (3.8)

λ̂m hm(ẑ) = 0 ∀m ∈ {1, . . . , ni}. (3.9)

To determine whether there can be multiple local minima, convexity is decisive. The
problem (3.1)-(3.3) is a convex optimization problem if the cost function c and the
feasible set F are convex. In that case, every locally optimal solution is also globally
optimal [NocedalWright06]. Furthermore, if the cost function is not only convex but
strictly convex, there exists a unique globally optimal solution. Optimization problems
can be written in different, equivalent ways, meaning that their solutions are identical,
although cost and constraint functions are not. Convex optimization problems are easier
to handle and interpret if the equality constraint functions are required to be affine, i.e.,
gj(z) = aT

j z + bj. With this requirement and the inequality constraint functions hm

being convex, it becomes geometrically clear that the feasible set is convex since sublevel
sets of convex functions are convex. Hence, convex optimization problems and convex
programming are often directly defined this way [BoydVandenberghe04, NocedalWright06].

The solution effort can benefit significantly if the optimization problem has further structure.
Of particular importance for the control of linear systems are so-called quadratic programs
and, in particular, their convex variants. A quadratic program is an optimization problem
with quadratic cost and affine constraint functions. A typical standard form, as it can be
supplied to many specialized solvers, is of the form

minimize
z∈Rn

1
2
zTHz + fTz (3.10)

subject to Cz ≤ d, (3.11)

Az = b (3.12)

with H ∈ R
n×n being symmetric, C ∈ R

ni×n, A ∈ R
ne×n, and the inequality in Equa-

tion (3.11) to be evaluated in an element-wise fashion. The feasible set is convex since it is a
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convex polytope, which becomes evident when expressing each equality as two inequalities,
giving the polytope in half-space representation, cf. Equation (2.22). The cost function
is convex if H is positive semi-definite, i.e., H ≥ 0, and strictly convex if it is positive
definite, i.e., H > 0. For a convex quadratic program, it can be shown that the KKT
conditions (3.5)-(3.9) are not only necessary but also sufficient [BoydVandenberghe04]. In
some applications, it is necessary to solve multiple, related convex quadratic programs of
the form (3.10)-(3.12), with certain quantities in the optimization problem depending on
a vector of parameters p ∈ R

np . For instance, this is the case for linear model predictive
control with a quadratic cost function, as it will appear in the subsequent section. In this
case, neglecting constant terms that do not change the optimal solution z⋆ = z⋆(p) of the
problem, the optimization problem can be brought to the form

minimize
z∈Rn

1
2
zTHz + pTFz (3.13)

subject to Gz ≤ W + Ep, (3.14)

which is referred to as a multi-parametric quadratic program in the litera-
ture [BemporadEtAl02]. Not only has the solution as a function of the parameters
a special structure, but it is even possible to solve a problem of this form explic-
itly [TøndelJohansenBemporad03, FaíscaDuaPistikopoulos07]. The practical significance
of this circumstance will become apparent later at the example of linear MPC.

While problems of the form (3.13)-(3.14) can be very useful for control purposes, general,
organizational tasks to be solved for successful cooperative robotic behavior can be of
a very different character. Formulating them as an optimization problem may lead to
a non-convex problem, with potentially multiple local and global optima. The cost and
constraint functions may be non-smooth or even discontinuous. In these cases, typical
gradient-based optimization algorithms are not suitable, even if gradient information was
available, since they converge to a local minimum determined by the starting point of
the optimization. This is especially crucial to robotics since the behavior should be fully
automated. Therefore, there is no human supervision that could provide insightful initial
guesses, restarting and reparameterizing the optimization process until a satisfactory
result has been achieved. Henceforth, global optimization strategies need to be used,
which is facilitated by the fact that typical organizational tasks are not as time-critical as
closed-loop control, which usually requires a guaranteed sampling time. An overview of
global optimization techniques can be found in [Rao09], with the approaches often being
based on heuristic ideas with, of course, there being no guarantee to find a global optimum.

For the further course of the thesis, it suffices to briefly introduce one approach to global
optimization, which is to be used later. It is based on the particle swarm optimization (PSO)
algorithm first introduced in [KennedyEberhart95], which is striking due to its simplicity.
The algorithm is stochastic, works iteratively, and does not consider any constraints. It
works with a set of candidate solutions of the optimization problem, which can be thought
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of as a population of particles mimicking social behavior. Subsequently, it is assumed
that a cost function c : Rn → R shall be minimized, and that there are nps particles,
with their positions at iteration k ∈ N0 being denoted as z̃

[k]
i ∈ R

n, i ∈ {1, . . . , nps}.
Following [ShiEberhart98], starting from arbitrary initial values z̃[0]

i , ∆z̃
[0]
i for each particle,

the particles’ positions are updated according to the iteration rule

∆z̃
[k]
i = wp

1 ∆z̃
[k−1]
i + wp

2 r
[k]
1,i (z̃best,[k]

i − z̃
[k]
i ) + wp

3 r
[k]
2,i (z̃best,[k]

swarm − z̃
[k]
i ), (3.15)

z̃
[k+1]
i = z̃

[k]
i + ∆z̃

[k]
i . (3.16)

Therein, z̃best,[k]
i and z̃best,[k]

swarm are the best positions, i.e., with lowest cost, attained by
particle i and by the whole swarm so far, respectively. The stochastic nature of PSO
becomes manifest through the fact that r

[k]
1,i and r

[k]
2,i are each drawn from a uniform

distribution on the interval [0, 1]. The three terms in Equation (3.15) are designed to
mimic inertia, cognitive, and social behavior, respectively [ShiEberhart98]. The algorithm
can be tuned to a specific problem through the positive parameters wp

1 , wp
2 , and wp

3 . It is
convergent if the condition 1

2
(wp

2 + wp
3) − 1 < wp

1 < 1 holds [van den BerghEngelbrecht06].
The parameterization of the optimization algorithm can be made easier by scaling the
optimization variable so that the range of reasonable values of the optimization variable
mimics a hypercube as closely as possible. In this context, it can make sense to satu-
rate ∆z̃

[k]
i to not exceed the edge length of the hypercube best representing the range of

the optimization variable. Another popular adaptation of the algorithm is to add a purely
stochastic term to the right-hand side of Equation (3.15) to encourage further exploration
even if the problem has converged [SedlaczekEberhard06]. Such a term is usually referred
to as craziness in the literature. Furthermore, it can make sense to use a different parame-
terization for the update of the best particle’s position than for the rest of the particles.
Being a reimplementation of the algorithm implemented by [SedlaczekEberhard06], these
extensions are also implemented and used in the PSO algorithm employed in this thesis.
Beyond these, there exist many more extensions in the literature that shall not be covered
here [PoliKennedyBlackwell07]. A more crucial shortcoming of the algorithm is that it
does not explicitly consider constraints. Fortunately, with the augmented Lagrangian
method [NocedalWright06], a strategy to solve constrained optimization problems by solv-
ing a sequence of unconstrained problems with a modified cost function has been shown
to work well with PSO [SedlaczekEberhard06]. The modified cost function, called the
augmented Lagrangian function, is based on the Lagrangian function but adds quadratic
penalty terms, which are scaled by scalar penalty factors. The penalty is designed to ensure
that a strict local minimum of the original constrained optimization problem is also a strict
local minimum of the augmented Lagrangian function if the optimal Lagrange multipliers
and large enough penalty factors are inserted [NocedalWright06]. Since neither the optimal
Lagrange multipliers nor an appropriate choice of the penalty factors are known a priori,
the factors and estimates of the multipliers are modified iteratively based on the constraint
violations observed from the solution of the unconstrained problem, which uses the aug-
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mented Lagrangian function as the cost function. Following [SedlaczekEberhard06], the
method is henceforward referred to as augmented Lagrangian particle swarm optimization.
Practical details will become apparent in Chapter 5, where this type of algorithm is put to
work in a distributed fashion. However, before that, it is time to examine how to leverage
optimization for control purposes.

3.2 Model Predictive Control

While this thesis makes use of predictive control in its distributed form, it is instructive
first to take a look at MPC in its centralized variant to obtain an understanding of
its fundamental principles of operation. This is especially true since the optimization
problems solved in a distributed MPC controller are structurally very similar to those
from centralized MPC, with DMPC theory being an extension of centralized MPC theory.
Although the discussion of distributed MPC later in the thesis will focus on linear systems,
it makes sense to introduce some of the theoretical basics of MPC for nonlinear systems
since it absorbs the linear case without the fundamentals being more arduous to explain
than for the linear case. The discussion will also make clear the main advantages of MPC.

3.2.1 The Concept of Model Predictive Control

It is the basic idea of model predictive control to optimize in each time step a cost
function over a finite prediction horizon, using a model of the control system’s dynamics to
predict its behavior over the horizon [RawlingsMayneDiehl17, Maciejowski01]. A central
conceptual advantage is that constraints on the control inputs and states can be considered
explicitly in the optimization problem. Therefore, if necessary for optimal performance,
the controller will utilize the system’s capabilities to the fullest extent, potentially and
reliably operating at the boundaries of the admissible state and input sets. Having
obtained an optimal sequence of inputs as the optimization problem’s solution, only the
first part of that sequence is applied to the system and the optimization problem is
solved anew in the next time step. Therefore, the prediction horizon recedes in time with
each time step that passes, which is why the approach is also called receding horizon
control [MayneMichalska90, PrimbsNevistić00]. The control input is usually kept constant
during a single sampling interval, which is also the case in this thesis. MPC schemes can be
formulated for continuous-time as well as for discrete-time systems, with this thesis focusing
on discrete-time schemes. Naturally, discrete-time schemes can be applied to continuous-
time systems if the model is discretized beforehand, which can be done in an exact
fashion for linear systems. The predictive, receding-horizon nature of MPC necessitates
some additional notational conventions, which, subsequently, will be introduced for the
discrete-time case only. The notation (· | t) shall denote trajectories predicted at time
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t t + 1 t + H

u(·)

x(·)

u⋆(· | t)

x⋆(· | t)

t t + 1 t + H + 1

u(·)

x(·)

u⋆(· | t + 1)

x⋆(· | t + 1)

Figure 3.1: Illustration of the receding horizon strategy for a discrete-time system. The
current prediction horizon is shaded in gray.

step t over the prediction horizon of length H ∈ N, H > 1. For instance, x(k | t) ∈ R
nx ,

k ∈ {t, . . . , t + H}, denotes the state sequence predicted based on the observed or measured
real system state x(t) and the candidate input sequence u(k | t), k ∈ {t, . . . , t + H − 1}.
The optimal input sequence solving the MPC optimization problem at time step t shall
be denoted as u⋆(k | t), k ∈ {t, . . . , t + H − 1}, of which u(t) = u⋆(t | t) is applied to the
system. Similarly, x⋆(k | t), k ∈ {t, . . . , t + H}, shall denote the corresponding optimal
state sequence which is predicted using the optimal input sequence. Employing this
notation, the receding horizon strategy is illustrated in Figure 3.1.

MPC has been used extensively in industrial applications early on, although mostly in the
process industries [QinBadgwell03], which is probably because systems in this area tend to
have slower dynamics, allowing the timely calculation of the control inputs even without
today’s refined algorithms and computation power. Nowadays, the underlying theory is
well-developed. Specialized optimization approaches and high-performance implementa-
tions allow today the successful, practical control of systems with fast dynamics also in
the nonlinear case [HouskaFerreauDiehl11a, KäpernickGraichen14, AnderssonEtAl19]. A
generic, nonlinear discrete-time MPC optimization problem for asymptotically stabilizing
a steady state may be given in the form

minimize
u(· | t)

(

J(x(t),u(· | t)) =
t+H−1∑

k=t

ℓ(x(k | t), u(k | t)) + Jf(x(t + H | t))

)

(3.17)

subject to x(k + 1 | t) = f(x(k | t),u(k | t)) , (3.18)

u(k | t) ∈ U , (3.19)

x(k | t) ∈ X , k ∈ {t, . . . , t + H − 1}, (3.20)

x(t + H | t) ∈ Xf, (3.21)

x(t | t) = x(t). (3.22)

Therein, the nonlinear, discrete-time dynamic model is given by (3.18). Due to the
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constraints (3.19)-(3.21), the inputs, states, and the terminal state within the horizon are
constrained to the closed sets U , X , and the closed terminal set Xf ⊂ X , respectively. In
the cost function (3.17), the term ℓ(x(k | t), u(k | t)), that is summed up over the horizon,
is called the stage cost, whereas Jf(x(t + H | t)) is called the terminal cost since it penalizes
the terminal state. To have the chance of obtaining a functioning controller, e.g., for
stabilizing a steady state, some fundamental design properties must be met. In general,
the steady state to be stabilized is assumed to be contained in the constraint sets and
the stage cost ℓ : X × U → R is usually continuous, positive definite with respect to the
steady state, and radially unbounded, i.e., increasing in an unbounded fashion as the
control error approaches infinity. Mostly, the stage cost is designed to have a single, global
minimum, located in the steady state, which is also assumed subsequently. Since, in
general, the MPC control law is not explicitly known, but merely implicitly given as the
solution of an optimization problem, there is usually no closed-form expression available
that describes the closed loop. Therefore, proving the nominal stability of a closed-loop
MPC scheme can be more complicated than for other state-feedback controllers that are
available as a closed-form expression. In theory-driven approaches, the terminal cost Jf and
the terminal set Xf are chosen in specific, interdependent ways to help guarantee closed-
loop stability [MayneEtAl00, ChenAllgöwer98]. This usually means that the remainder of
the optimization problem can be tuned relatively freely to the needs of the application,
including, e.g., weighting factors in the stage cost as well as the extents of the constraint
sets X and U . Hence, with an MPC optimization problem designed in this manner, there is
a certain level of decoupling between ascertaining formal properties like stability and tuning
the performance, which is in stark contrast to many simpler, classic control approaches
like PID control. In addition, weights in the cost function and constraints on the inputs
and states are very intuitive in their meaning, so that it is often rather clear which tuning
parameter to modify in order to meet a specific control goal. Furthermore, the approach
works naturally with multiple-input multiple-output (MIMO) systems. In contrast, classic
schemes like PID control are usually restricted to single-input single-output (SISO) systems.
Therefore, real-world implementations of classic control methods for MIMO systems often
rely on the application of multiple, separate controllers in heuristic, complicated control
loop designs that are hard to maintain. Hence, apart from its conceptual advantages
concerning constraint handling, the motivation to use an MPC controller may often enough
not be seen in performance improvements, but rather in its practical advantages with
regard to tuning and a simplified control structure.

Without delving into too much technical detail, there are multiple techniques to guarantee
the nominal asymptotic stability of the closed loop for the problem above. These are all
based on Lyapunov’s stability theorem [Khalil02], which, essentially, consists of finding
a function that is decreasing along all trajectories of the closed loop. Such a so-called
Lyapunov function can be seen as a generalization of the concept of energy from mechanics.
If the sum of potential and kinetic energy is decreasing along all trajectories of a mechanical
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system – as it is the case for an autonomous, damped mechanical system – it will
eventually come to a standstill, i.e., the system will have converged to a steady state.
It is also clear that, in this case, the system on its own cannot reach states of higher
energy, which corresponds to the notion of stability. For a time-invariant, continuous-time
system ẋ = f(x) with f : D ⊂ R

nx → R
nx, f(0) = 0, and x = 0 ∈ D being the steady-

state to be inspected, a function V : D → R is a Lyapunov function if it is continuously
differentiable and if

V (0) = 0, V (x) > 0 ∀x ∈ D \ {0}, (3.23)

V̇ (x) :=
∂V

∂x
f(x) ≤ 0 ∀x ∈ D. (3.24)

The latter means that the derivative of V along the solution trajectories of the system
is non-positive on D. If such a Lyapunov function exists, x = 0 is a stable equilibrium,
with it being asymptotically stable if V̇ (x) < 0 for all x ∈ D \ {0}, see [Khalil02]. A
system of the form ẋ = f(x) may appear as the closed loop of a system ẋ = f(x,u)
controlled by a state-feedback law u = u(x), so the theory is useful both for the stability
analysis of autonomous systems as well as for the design of feedback control. As such,
it will also reappear in Section 3.3, which introduces graph-algebraic control. Proofs
of discrete-time MPC schemes, however, usually rely on discrete-time versions of these
relations. Although introductions to Lyapunov theory for continuous-time systems are
more common [Khalil02, KalmanBertram60a], a concise treatment of the discrete-time case
is available in [KalmanBertram60b]. In brief, for a discrete-time system x(t+1) = f(x(t)),
t ∈ N0, f : D ⊂ R

nx → R
nx with 0 ∈ D and f(0) = 0, a function V : D → R is a Lyapunov

function if

V (0) = 0, V (x) > 0 ∀x ∈ D \ {0}, (3.25)

∆V (x) := V (f(x)) − V (x) ≤ 0 ∀x ∈ D. (3.26)

Once again, the existence of such a function implies stability of x = 0, with asymptotic
stability being obtained if V is continuous and ∆V (x) < 0 for all x ∈ D \ {0}. In both
the continuous-time and discrete-time cases, asymptotic stability holds globally if V is
additionally radially unbounded, i.e., if V (x) → ∞ as ‖x‖ → ∞ for some norm ‖ · ‖.

In the case of MPC, the foundational idea is to use the minimized cost function J⋆(x(t)) :=
J(x(t),u⋆(· | t)) as a Lyapunov function candidate. In general, J⋆(x(t)) is not directly
available as a function of x(t), because the optimal solution of the MPC problem is usually
not known explicitly. Nevertheless, following [MayneEtAl00], by wisely choosing Xf and Jf,
it may be shown that

J⋆(x(t + 1)) = J⋆(f(x(t),u⋆(t | t))) ≤ J⋆(x(t)) − ℓ(x(t),u⋆(t | t)). (3.27)

Due to the usual design of ℓ(·, ·), this implies that, indeed, the Lyapunov function candidate
is decreasing outside of the steady state that shall be stabilized asymptotically. The key



34 Chapter 3: Fundamentals from Distributed Control and Organization

to show that Equation (3.27) holds is to construct a feasible candidate solution from the
optimal solution of the previous time step. By optimality of the unknown optimal solution
of the new time step, this candidate solution provides an upper bound on the optimal cost
of the new time step, which can be reformulated and upper-bounded further to lead to
the right-hand side of Equation (3.27). Theoretical literature, see, e.g., [MayneEtAl00],
proposes several ways to facilitate the construction of a candidate solution and upper-
bounding the corresponding cost quantities to arrive at Equation (3.27). Depending on
the approach taken, it can be useful to design the terminal set Xf as a positively invariant
set with respect to the loop closed by a stabilizing terminal controller that satisfies the
input constraints within Xf. In this case, apart from minor technical assumptions, showing
asymptotic closed-loop stability comes down to checking that a joint condition on the
terminal cost, the stage cost, and the terminal controller holds within the terminal set.
This condition implies that the terminal cost is a local Lyapunov function within the
terminal set for the loop closed by the terminal controller [MayneEtAl00]. Due to the
applications appearing later on, the subsequent delineations will focus mostly on the linear
case. Therefore, the discussion of concrete, stabilizing design choices is deferred to the
linear case discussed below. In any case, it is important to ensure that the optimization
problem is recursively feasible. This means that if the optimization problem is feasible
initially, it remains feasible in subsequent time steps assuming that the system to be
controlled behaves like the nominal system.

While guarantees on the nominal behavior are certainly a desirable feature of a controller,
it is important to note that they do not guarantee the functioning of the controller in
a real-world system. Hence, even with formal, nominal guarantees, extensive testing of
the real-world closed-loop system must be performed to ensure its safety. This is due to
many factors. Firstly, no model is perfect, and therefore, a real-world system will never
behave exactly like its nominal model. Secondly, systems in the real world are subject to
exogenous disturbances. Not only can they deteriorate performance, but they can even
lead to infeasibility of the problem if a constraint, differently than previously planned,
cannot be satisfied anymore due to a disturbance. Thirdly, optimization algorithms may
not be perfect; their solutions are usually only accurate up to a finite residuum, and,
in limited calculation time, they might not find an optimal solution. There exist tech-
niques to mitigate some of these issues, e.g., suboptimal MPC [ScokaertMayneRawlings99]
and robust MPC techniques that can deal with disturbances with known bounds, see,
e.g., [MayneSeronRaković05, Raković12, LimonEtAl10]. However, robust MPC techniques
tend to make the optimization problem more complicated and hence harder to solve accu-
rately and robustly in limited time. In fact, in many practical applications, control designers
refrain from using additional constraints to obtain guarantees on nominal closed-loop proper-
ties because their design procedures can become arduous and they complicate the solution of
the resulting optimization problem [HouskaFerreauDiehl11b, BächleHentzeltGraichen13].
This holds true especially if the optimization problem devoid of additional stabilizing
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constraints does not have any state constraints whatsoever, since input constraints may be
dealt with more efficiently. Still, working as close as possible to these formal techniques,
and, in particular, understanding how they establish the guarantees, can help greatly to
design MPC controllers that work well in real-world applications. Furthermore, there
are formal proof techniques to show the stability of the MPC closed loop without any
additional stabilizing constraints, with the decisive factor being to choose the horizon long
enough [BocciaGrüneWorthmann14, LimonEtAl06]. This is also a possible theoretical
explanation why schemes without such constraints often function very well in practice,
even without having proven their formal guarantees.

In the important linear case, the cost function is usually chosen to be quadratic and
the constraint sets are assumed to be convex and polytopic. For the simple task of
asymptotically stabilizing a steady state at x = u = 0, the optimization problem may be
given in the form

minimize
u(· | t)

t+H−1∑

k=t

‖x(k | t)‖2
Q + ‖u(k | t)‖2

R + ‖x(t + H | t)‖2
P (3.28)

subject to x(k + 1 | t) = Ax(k | t) + Bu(k | t), (3.29)

Cuu(k | t) ≤ du, (3.30)

Cxx(k | t) ≤ dx, k ∈ {t, . . . , t + H − 1}, (3.31)

Cfx(t + H | t) ≤ df, (3.32)

x(t | t) = x(t). (3.33)

In the cost function, squared weighted norms are employed, which are defined as ‖v‖2
V

:=
vTV v for a vector v and a symmetric, positive semi-definite matrix V of fitting dimensions.
The symmetric weighting matrices Q, R, and, if non-zero, P are selected to be positive
definite. Furthermore, it is assumed subsequently that (A,B) is controllable.

For a modification of the above problem with an infinite horizon H = ∞ and without any
constraints or terminal cost, there exists an explicit solution u(t) = K̄x with the gain
matrix taking the form K̄ = −(R+BTSB)−1BTSA. This controller is called the (infinite-
horizon) linear quadratic regulator (LQR), which can be obtained from the positive-definite
solution S of the discrete-time algebraic Riccati equation (DARE) [DoratoLevis71, Laub79].
Henceforth, linear MPC can be seen as a finite-horizon approximation of the constrained
LQR problem [ScokaertRawlings98] and therefore as a reaction to the hardship of obtaining
a constrained LQR in closed form. For the MPC problem, it can be shown that the sufficient
asymptotic stability requirements described above can be met by choosing the terminal
cost weight P = S as the solution of the DARE, and the terminal set as the maximal
positively invariant set defined by

Xf =
{

x ∈ R
nx | Cxx ≤ dx, CuK̄x ≤ du, (A + BK̄)x ∈ Xf

}

. (3.34)

This allows to use the LQR as a terminal controller to obtain candidate inputs within the
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terminal set. Then, within the terminal set, the terminal cost is a local Lyapunov function
for the loop closed by the LQR [MayneEtAl00]. Under specific circumstances, the above
choice of the terminal cost gives a direct relationship of the finite-horizon MPC problem to
its infinite-horizon counterpart. Indeed, it can be shown that the infinite-horizon, uncon-
strained LQR cost of regulating any state x̄ into the origin is x̄TP x̄ [KwakernaakSivan72],
which is precisely the terminal cost of the MPC problem for x̄ = x(t + H | t). Hence, if the
horizon is chosen long enough so that, without actually enforcing the terminal constraint,
the optimal terminal state lies within the terminal set anyway, the optimal cost of the
MPC problem is exactly equal to the optimal cost of the corresponding infinite horizon
problem [ScokaertRawlings98].

An algorithm to calculate the invariant set from Equation (3.34) may be found
in [GilbertTan91]. However, in some circumstances, as they will appear later in the
thesis, it may not be desirable to perform the potentially extensive calculation of the
invariant terminal set and terminal cost. In that case, a simpler, valid choice of terminal
set and terminal controller can be useful, namely Xf = {0} and the zero input as the
terminal controller. Subsequently, this choice of terminal constraint is referred to as a zero
terminal constraint, or, more general in case of non-zero setpoints, as a terminal equality
constraint. Naturally, the controller will only function starting from those states from
which the state x = 0 can actually be reached within the prediction horizon. Compared
to a controller with a larger terminal set, this may limit the applicability of the controller.
However, depending on the desired operating region of the controller, this may not always
pose a problem. Example 3 gives a practical example for a linear MPC controller designed
with stabilizing design ingredients in the form of a terminal set and terminal cost, showing
that a terminal set may result in many additional state constraints already for a system of
moderate size.

Example 3: Linear MPC for a Pendulum on a Cart

r

Cp

Cc u

s

θTo give practical insight on the design process of an MPC
controller, this example considers an inverted pendulum
on a cart as it is illustrated on the right-hand side.
The system’s planar motions are described using the

generalized coordinates q =
[

s θ
]
T

. The controller
shall govern the force u so that the otherwise unstable
equilibrium q = q̇ = 0 is stabilized. By nature, the
system’s dynamics is nonlinear. Nevertheless, as will be
seen, to merely stabilize the system for small deviations
from the setpoint, a linear controller suffices. The cart,
with the center of mass Cc, is of mass mc = 0.5 kg,
whereas the pendulum is of mass mp = 1 kg with r =
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0.5 m and its relevant principal moment of inertia about its center of mass Cp

being J = 0.1 kg m2. Following Section 2.1, this leads to the equations of motion



mc + mp mp r cos(θ)

mp r cos(θ) J + mp r2
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which follows the template given by Equation (2.8). To obtain a model that can
be used within the linear MPC controller, the equations of motion are linearized
around the operating point qo = q̇o = 0 and brought to state-space form, see
Equations (2.9)-(2.15). Afterwards, it is discretized using a zero-order hold with
the sampling time ts = 0.01 s. The MPC problem is formulated according to
Equations (3.28)-(3.33) with X = R

4, U = {u ∈ R | −0.5 N ≤ u ≤ 2.5 N}, H = 35,
Q = I, and R = 1. The terminal cost weight P is chosen as the solution of
the DARE corresponding to the infinite-horizon LQR, with the terminal set as
per Equation (3.34) and calculated using the algorithm from [GilbertTan91]. The
resulting convex, polytopic terminal set consists of 720 individual constraints. The
plots below illustrate the controller’s behavior in a simulation of the nonlinear
system, with θ(0) = 0.1 rad, s(0) = ṡ(0) = θ̇(0) = 0. Indeed, the controller manages
to stabilize the system, reliably operating the system at the input bounds when
necessary. It is worth noting that the corresponding controller with the simpler zero
terminal constraint is not initially feasible for the chosen initial condition. It merely
starts to be feasible at initial angles of around θ(0) ≈ 6 · 10−4 rad, highlighting that
not all kinds of stabilizing design ingredients are practical for all kinds of systems.
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One of the key disadvantages of MPC is that the controller is rather hard to grasp,
since its underlying feedback law is not available in closed form. However, for linear
MPC as introduced above, it is even possible to calculate an explicit solution of the
optimization problem [BemporadEtAl02]. Recognizing that the system dynamics (3.29)
can be recursively inserted into the cost function (3.28) and the state constraints (3.31),
(3.32) allows to bring the problem to the form of a multi-parametric quadratic program as
introduced in Equations (3.13)-(3.14). In the problem given above, the set of parameters,
on which the optimization problem’s solution depends, consists only of the measured
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state x(t). In more general problems, additional parameters may appear, e.g., a reference
value in the case of a tracking controller [LimonEtAl08]. The explicit solution can be
obtained by exploiting the Karush-Kuhn-Tucker conditions (3.5)-(3.9). This leads to an
affine control law for each valid combination of active constraints. Consequently, together
with the number of possible combinations of active constraints, also the controller’s
complexity may grow exponentially with the number of constraints [BemporadEtAl02].
Henceforth, although the calculation effort to explicitly calculate the controller may be
prohibitive and even become intractable for larger problems, these considerations allow to
draw valuable conclusions on the solution’s character and properties. Indeed, not only
is the overall solution a continuous, piecewise-affine function of the parameters, with the
optimal cost being piecewise quadratic, but it can also be shown that the set of parameters
can be partitioned into convex polytopes with one affine control law being optimal in each
polytope [BemporadEtAl02]. This solution structure can be used to help greatly with the
repeated online solution of linear MPC problems [FerreauEtAl14, MitzeMönnigmann20].
Indeed, all quadratic programs occurring later in this thesis are solved with the open-source
software qpOASES, which takes advantage of the problem structure to solve subsequent,
related multi-parametric quadratic programs more swiftly [FerreauEtAl14]. Furthermore,
as shown in [MönnigmannOttenJost15], the insight on the solution of linear MPC problems
may even be useful to get a better grasp on nonlinear MPC control laws.

To conclude this brief overview of model predictive control fundamentals, it can only
be stressed that the MPC research field is very active, with many specialized variants,
extensions, and combinations thereof having been researched. Naturally, the area crucial
to this thesis is distributed MPC, which will be treated in greater detail subsequently.
Beyond that, apart from the already briefly mentioned robust MPC and tracking control
variants, there also exist economic MPC schemes [EllisDurandChristofides14] aiming at
using more general cost functions, e.g., to obtain an economic behavior of a system which
need not consist of asymptotically stabilizing a fixed, known setpoint. Furthermore, a field
that has become very active in recent years is learning-based MPC. There, the goal is to
integrate models or sub-models that are inferred from data and not from first principles,
see, e.g., [AswaniEtAl13, LimonCalliessMaciejowski17, HewingKabzanZeilinger19], with
research striving to maintain guarantees on the closed-loop behavior [BerberichEtAl21].
Learning techniques may also be leveraged to learn an approximation of an MPC controller,
ideally drastically reducing the calculation time while keeping the controller’s favorable
properties [HertneckEtAl18].

3.2.2 Distributed MPC

Distributed MPC can be seen as a reaction to two demands. Firstly, for some systems, such
as a group of cooperating robots, the existing system structure naturally suggests that each
subsystem makes its own decisions, albeit in coordination with the other systems. Closely
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related to this is the hope that the absence of a central control unit, such as a leading robot,
will increase the reliability, robustness, and, in particular, expandability of the system.
Secondly, for general classes of systems, solving one central, large optimization problem
may become computationally intractable within the system’s sampling time requirements.
Therefore, solving multiple, smaller subproblems on different processing units could make
the model predictive control of large-scale systems meet challenging real-time requirements.
However, different from the multi-robot case, a general system’s innate structure may not
suggest a natural decomposition into subsystems, making the decomposition a part of
the control design process. Due to these different motivations and various finer-grained
nuances of the control problem to be solved, there is a wide and growing range of different
distributed MPC schemes [ChristofidesEtAl13, NegenbornMaestre14]. Hence, this section
aims to give some key criteria to differentiate the plethora of theory-driven approaches,
aiming to deduce which types of schemes are particularly useful for the cooperative task
solution with otherwise dynamically independent mobile robots.

The technologically simplest way to decentralize the model predictive control of a large-
scale system is to cut the system into multiple subsystems, neglecting any couplings
between them, and formulating a controller for each subsystem that only operates on
information from that single subsystem. One may then seek conditions on the neglected
couplings and potentially appropriate modifications of the optimization problems to still
be able to guarantee a satisfactory closed-loop behavior of the whole system. Naturally,
this concept is not restricted to MPC, with work on it dating back many decades, see,
e.g., [WangDavison73]. Many authors refer to this kind of control as decentralized control,
also within the area of MPC [Scattolini09, ChristofidesEtAl13]. However, this term is not
particularly useful to distinguish this kind of control from distributed MPC techniques
that also do not rely on any centralized entity despite not neglecting couplings. To that
end, the denomination as decoupled control seems more prudent. In decoupled MPC
strategies, the couplings may be treated as disturbances on the individual systems, with
robustness techniques being used to obtain closed-loop guarantees [MagniScattolini06,
RaimondoMagniScattolini07]. This approach is more suited to weak dynamic couplings.
Hence, highly cooperative tasks in distributed robotics, e.g., described by a coupled cost
function, need distributed schemes that utilize shared or communicated information.

Indeed, it is important to distinguish where exactly couplings enter the optimization
problem. When formulating a specific control task as an MPC problem, couplings
may appear in the dynamics, constraints, and cost. Coupled constraints may appear if
limited resources are used jointly by the subsystems, whereas a coupled cost can be used
to encode a cooperative control goal even of dynamically decoupled systems. Usually,
schemes can only deal with a subset of these types of couplings. For instance, the scheme
from [MüllerRebleAllgöwer12] allows for couplings in state and input constraints as well
as in the cost function, whereas the work from [RichardsHow07] considers couplings in the
constraints only. However, both are limited to dynamically decoupled systems. In contrast,
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the schemes from [StewartEtAl10, StewartWrightRawlings11] can deal with couplings
in the dynamics, but generally not with coupled constraints, although [StewartEtAl10]
contains an extension to treat coupled input constraints. The couplings in the cost
function can be distinguished further. In the most general case, the overall cost function is
inseparable with regard to the contributions of the individual subsystems, not presuming
any special additive structure. However, if the cost function has a special structure, a wider
range of schemes becomes applicable. For instance, the scheme in [StewartEtAl10] assumes
that the overall cost is a weighted sum of subsystem cost functions, with the subsystem cost
functions only being coupled implicitly through the dynamics. In [MüllerRebleAllgöwer12],
the authors also use a separability property to simplify their proposed control scheme
significantly. In general, schemes in which a controller takes into account the effects of its
control actions on the cost functions of other controllers are called cooperative schemes.
Depending on the coupling structure of the problem to be solved, one subsystem’s control
problem may not depend on information from every other subsystem. Subsystems whose
information is indeed necessary for the solution of another subsystem’s control problem
are referred to as its neighbors.

Furthermore, different schemes often arrive at different solution strategies [LiuEtAl10].
In some schemes, e.g., [StewartEtAl10, StewartWrightRawlings11, FerramoscaEtAl13],
communication and the solution of the distributed optimization problems can happen in
parallel, usually in an iterative fashion. This means that the solution can be improved
by multiple, synchronous iterations of communication and computation within one time
step, at best recovering the performance of the centralized MPC problem as the number
of iterations approaches infinity [StewartEtAl10]. Nevertheless, a functioning controller is
already obtained with one iteration per time step. Contrasting these iterative schemes, there
also exist sequential schemes [LiuEtAl10, MüllerRebleAllgöwer12] in which the subsystem
controllers optimize one after another, sending information on the optimization’s result
to the neighboring systems immediately afterward and, for each robot, only once every
time step. Naturally, while non-neighboring systems can still optimize in parallel, this
approach is not as universally scalable as iterative schemes with their parallel computation
and communication, although sequential optimization makes it easier to consider coupled
constraints [MüllerRebleAllgöwer12].

From a technical perspective, the actual optimization problems solved by the distributed
controllers are not fundamentally different from optimization problems solved for centralized
MPC. The decisive difference lies in the fact that each subsystem only optimizes over
its own control input, with the current control inputs and the corresponding predicted
state trajectories of the other systems being unknown. Hence, they are approximated by
means of feasible candidates that are built based on the communicated results from the
previous time step and inserted as additional parameters into the optimization problem.
Interestingly, iterative DMPC schemes can often be seen as an attempt to solve an MPC
problem, that has been designed in a centralized fashion, with distributed optimization
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methods designed to parallelize the solution of general optimization problems. For instance,
the schemes from [StewartEtAl10, FerramoscaEtAl13] are akin to the iterative Jacobi
algorithm [BertsekasTsitsiklis89]. Approaching distributed MPC from this alternative
direction, it can be promising to seek the application of other methods from the field of
distributed and parallel optimization [NotarstefanoNotarnicolaCamisa19]. However, some
otherwise efficient approaches require a centralized entity coordinating the distributed
solution of the subproblems [BraunEtAl16, BraunEtAl18].

Apart from showing the variety of the research field, the above disquisitions make it
relatively clear that there cannot be one scheme to fit all applications. Henceforth, the
most crucial step is to carefully formulate the optimization problem that encapsulates the
control goals and to closely inspect the structure and the couplings between quantities
from different subsystems. This already coarsely determines which schemes are a potential
fit. Crucial to this thesis are the requirements of cooperative distributed robotics. A
common requirement is that couplings in the cost function are a necessity, often without
any separable structure. This stems from the fact that a priori, a group of cooperating
robots is dynamically independent and actuated individually, with the couplings and
cooperation arising primarily from the fact that the robots shall solve one common task,
meaning that the robots try to minimize a joint cost function in a distributed manner.
Furthermore, robotics usually necessitates short sampling times, especially compared to
applications in process industries, which are a typical field for the application of DMPC
in the literature [AlvaradoEtAl11]. Thus, although sequential schemes can be used for a
moderate number of cooperating robots [EbelSharafian ArdakaniEberhard17a], iterative
schemes seem beneficial, since, for those, all robots can optimize in parallel. Apart from
that, all considerations from centralized MPC persist, e.g., whether the nominal dynamics
is linear or nonlinear and whether more general control goals than setpoint stabilization
can be considered, with economic distributed MPC having received ample attention in
recent years [MüllerAllgöwer14, KöhlerMüllerAllgöwer18]. Of particular importance to
robotics is the topic of tracking control, since it is rarely the goal in robotics to stabilize a
never-changing setpoint. Instead, if robots perform work tasks, it usually means that the
robots or end-effectors move to different points in space or follow a trajectory. Therefore,
it is at least necessary that the setpoint to be stabilized can be changed at system runtime.
However, if terminal constraints are used as stabilizing design ingredients, e.g., a terminal
set around the setpoint, the optimization problem might become infeasible if the set around
the new setpoint cannot be reached within the prediction horizon. This can be a problem for
centralized MPC as well as for distributed MPC, with terminal constraints also being used in
certain DMPC schemes, see, e.g., [StewartEtAl10, MüllerRebleAllgöwer12]. One strategy
to deal with this is to introduce an artificial steady state as an additional optimization
variable. Tracking the corresponding artificial reference while penalizing deviations of
the artificial from the real reference allows to keep recursive feasibility for arbitrary
changes of the reference, asymptotically stabilizing the reference value if it is feasible
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and kept constant. Based on a scheme of this type for centralized MPC [LimonEtAl08],
nominal guarantees for a distributed scheme have been proven in [FerramoscaEtAl13],
employing a terminal cost and terminal set calculated for the full, centralized system
in a preprocessing step. The scheme is of the iterative type and can deal with linear
dynamics, coupled constraints, and a fully coupled cost function. Henceforth, it seems to
be a good candidate for many use cases in distributed robotics, at least as long as linear
dynamics can be used. To help with the latter, it can be possible and acceptable in some
cases to linearize along reference trajectories or employ subordinate controllers for the
feedback linearization of the subsystems [Schnelle18]. However, when looking for genuinely
nonlinear DMPC schemes meeting the most typical requirements of distributed robotics,
i.e., tracking control with support for coupled, cooperative cost functions, the situation
seems to be bleaker, at least regarding schemes with nominal stability guarantees. For
instance, the rather encompassing overview in [NegenbornMaestre14] does not list a single
scheme meeting these requirements. Nevertheless, this need not mean that a heuristically
designed, nonlinear DMPC scheme, without proven nominal guarantees, cannot work well
in practice. Still, driven by the type of hardware employed, this thesis’s main application
will rely on a linear dynamic model in the distributed control layer, demonstrating the
practical coordinative usefulness of linear distributed tracking control.

In the schemes referenced above, which mostly come from the theoretical MPC com-
munity, actual implementations usually focus on fixed, small numbers of systems,
both when real hardware is involved [AlvaradoEtAl11] as well as in simulative sce-
narios [StewartEtAl10, StewartWrightRawlings11]. Similarly, the online reconfigura-
tion of the controllers, with systems spontaneously joining or leaving, is usually not
treated. This is probably due to the implementational complexity raised by not hav-
ing merely one control loop but rather a variable number of synchronously running
control loops for which also networked communication has to be implemented. Some-
times, although without loss of generality, even the theory is described for two systems
only [StewartEtAl10, StewartWrightRawlings11] because even the notation can get ardu-
ous, which is a testament to the schemes’ practical complexity. Hence, it will be very
interesting to see within Chapters 5 and 6 how DMPC can be employed to cope with the
practical challenges of a dynamic network of mobile robots. However, due to the technical
complexity of DMPC, it seems prudent to have handy a control paradigm that poses
less implementational and computational challenges, permitting comparisons between the
schemes to see whether the application of DMPC brings about enough practical advantages
to warrant dealing with its complexities. Such a control paradigm is introduced in the
subsequent section.
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3.3 Graph-Algebraic Control

The defining idea of the graph-algebraic approach to distributed control is to represent as
a graph the information exchange structure between several systems that shall cooperate.
The approach is usually motivated to arise from coordination problems of a group of
systems, usually called agents, with typically simple dynamics, e.g., single integrator
dynamics [MesbahiEgerstedt10]. Examples include a group of mobile robots agreeing on
and moving to a common position, maintaining a formation, or agreeing on a common
velocity, often inspired by natural phenomena like the flocking behavior of a swarm of
birds [BulloCortésMartínez09, MesbahiEgerstedt10, BaiArcakWen11]. Many variants and
extensions exist, e.g., assuming either bidirectional or unidirectional communication and
extending the theory to more general system dynamics. As the name suggests, the area is
built upon algebraic representations of graphs, e.g., the incidence matrix introduced in
Section 2.2.1, with these representations and their properties helping with control design.
The foundational task is to let a group of mobile robots, modeled as single integrators,
meet at a point, which is referred to as the agreement problem [BaiArcakWen11]. This
can be extended to formation control by letting the relative vectors between the robot
positions not converge to zero but to desired, non-zero values. Hence, formation control
can be seen as a shifted agreement problem. While the focus on the positioning of mobile
robots seems limiting, in more abstract manners, agreement means that a group of systems
agrees on and converges to a common state, whereas formation control means that the
systems coordinate their states relative to one another.

To formulate agreement and formation control problems using a graph-algebraic paradigm,
the incidence matrix is useful. Assuming bidirectional communication, the initial step
is to represent the communication structure as an undirected graph and to define an
arbitrary oriented graph from that. This is shown in the two illustrations on the left
of Figure 3.2, with three robots participating, although robots 1 and 3 cannot directly
communicate with one another. To obtain more compact matrices for, e.g., handling
the two movement directions of robots in the plane, it is useful to define the short-hand
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Figure 3.2: From left to right, illustrations of a bidirectional communication graph, a
corresponding oriented graph, and a desired formation are shown, respectively.



44 Chapter 3: Fundamentals from Distributed Control and Organization

notation B̄ := B⇀
G ⊗ I2 with the identity In ∈ R

n×n, n ∈ N, and ⊗ denoting the Kronecker
product. This can be directly generalized for any dimension, but, due to the premises
of the thesis and for illustratory purposes, the subsequent expressions are given for two
dimensions, sticking with the intuitively accessible notion of robots moving in the plane.
It follows that the relative vectors between the robot positions along the edges of the
oriented graph can be obtained from the robot positions ix ∈ R

2 by means of d = B̄
Tx

with d =
[

1d
T . . . nE

dT

]
T

, x =
[

1x
T . . . nV

xT

]
T

. This can be readily verified for the
example from Figure 3.2 since the transposed incidence matrix of the oriented graph
therein is given by

B
T
⇀
G =




0 1 −1
1 −1 0



 . (3.35)

A specific, desired formation given by idd
!= id is illustrated on the right-hand side of the

figure. From that illustration, it is intuitively clear that the formation, merely defined
by relative vectors, can be attained anywhere in the plane. Mathematically, this follows
from the aforementioned fact that the rank of the incidence matrix of an orientation of
a connected graph with nV nodes is nV − 1 [GodsilRoyle01], and, therefore, it holds that
rank

(

B̄
)

= 2 rank
(

B⇀
G

)

= 2 (nV − 1). Thus, the null space of B̄
T is of dimension 2 and

can be identified as ker
(

B̄
T
)

= {1nV
⊗ n | n ∈ R

2} due to B
T
⇀
G 1nV

= 0, formally giving
the invariance to shifts of the whole formation by a displacement n.

For robots modeled with the single-integrator dynamics iẋ = iu, the agreement problem
can be solved with the feedback

u = −B̄d = −B̄B̄
Tx =: −(L ⊗ I2)x (3.36)

where u =
[

1u
T . . . nV

uT

]
T

. Therein, L = B⇀
G B

T
⇀
G is the so-called Laplacian matrix of

the underlying undirected communication graph [MesbahiEgerstedt10]. It is independent
of the orientation used to obtain B⇀

G [GodsilRoyle01] and it is, by definition, symmetric
and positive semi-definite. Closed-loop convergence can be proven by using V (x) =
1
2
dTd = 1

2
xT(L ⊗ I2)x as a Lyapunov function candidate and employing LaSalle’s

invariance principle [Khalil02] to conclude that the system state approaches the set S =
{x ∈ R

2 nV | (L ⊗ I2)x = 0}, which is positively invariant with respect to the closed
loop. For a connected graph, L has exactly one eigenvalue that is zero, with 1nV

as a
corresponding eigenvector [GodsilRoyle01]. Consequently, the closed loop approaches S =
{x ∈ R

2 nV | 1xi = 2xi = · · · = nV
xi, i ∈ {1, 2}}, as desired. Attaining and maintaining a

formation with dd 6= 0 can be treated as a shifted agreement problem with u = −B̄(d−dd).

From these disquisitions, it is evident that this approach to cooperative control is vastly
different in its structure and way of thinking than DMPC. In DMPC, as long as the selected
scheme meets the structural requirements of the system dynamics and the control task, the
control goal and dynamics can be simply inserted into the optimization problem, whereas
the graph-algebraic approach may require a new derivation. Although, motivated by the
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hardware setup employed, this thesis later on focuses on very specific dynamics, Excursus 2
gives an instructive example of how the theory can be extended to linear second-order
dynamics. For more general cases, [BaiArcakWen11] explains a rather systematic approach
to design graph-algebraic controllers based on the concept of passivity [Khalil02].

Excursus 2: Agreement for Double Integrator Dynamics

When mobile robots are modeled by means of second-order dynamics of the
form iM iq̈ = iu with iq ∈ R

2 as the position of robot i and iM = mi I2 > 0, the
above derivations can be extended rather easily. Agreement can be reached with
the feedback u = −Dq̇ − B̄d = −Dq̇ − (L⊗ I2)q, which, by means of the diagonal
matrix D > 0, introduces artificial damping into the closed loop. Defining q :=
[

1q
T . . . nV

qT

]
T

, x :=
[

qT q̇T

]
T

, M , and u such that Mq̈ = u and using the
Lyapunov function candidate V (x) = 1

2
q̇TMq̇ + 1

2
dTd gives V̇ (x) = · · · = −q̇TDq̇.

Hence, the closed loop approaches the positively invariant set

S =
{

x ∈ R
4 nV

∣
∣
∣ q̇ = q̈ = 0

}

=
{

x ∈ R
4 nV

∣
∣
∣ q̇ = 0, (L ⊗ I2) q = 0

}

(3.37)

by means of LaSalle’s invariance principle [Khalil02], yielding

S =
{

x ∈ R
4 nV | q̇ = 0, 1qi = 2qi = · · · = nV

qi, i ∈ {1, 2}
}

(3.38)

by the same arguments as before. A simulation result for the agreement of three
robots subject to the communication structure from Figure 3.2 is shown in Figure 3.3.
The parameters are chosen to m1 = m2 = m3 = 1 kg and D = 2 I6 kg/s. The
continuous control law is implemented in a discretized fashion using a zero-order hold
with a sampling time of 0.05 s, assuming perfect communication between the systems.
Figure 3.4 shows a simulation result for formation control using the same parameters

but the modified control law u = −Dq̇ − B̄ (d − dd) with dd =
[

1d
T

d 2d
T

d

]
T

and

1dd =
[

0 −2
]
T

m, 2dd =
[

3 1
]
T

m, which corresponds to the formation shape on
the right-hand side of Figure 3.2.
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Chapter 4

Designing a Scheme for Cooperative

Robotic Behavior

As hinted at by the fundamentals discussed, distributed robotics’ central challenge is its
reliance on fundamentals and methods from a wide variety of research directions. A partic-
ular difficulty is the design of a structure accommodating, arranging, and interconnecting
all these methods so that practical tasks can be solved reliably by the robotic system. Fol-
lowing this line of thought, this chapter deduces the structure of a scheme for cooperative
robotic task solution from requirements and features characteristic to distributed robotics.
Hence, in the first section, these requirements are defined and discussed, with the proposed
approach and system architecture being introduced in the subsequent section. The chapter
concludes with the design of a mobile robot tailored to the proposed system architecture’s
operational requirements, preparing the ground for the design of the concrete control and
organization schemes operating within the architecture.

4.1 Defining Features of Distributed Cooperative Be-

havior

The robustness and flexibility advantages associated with the field can only come to full
fruition if it is possible that any of the entities in the robotic network can leave or enter
the task at any time. Hence, time-critical decisions should at best be made in a thoroughly
distributed manner, meaning that these decisions are not made by any centralized entity,
e.g., by one of the robots acting as a leader. This is particularly important with regard to
the dynamic control of the robots since that needs to happen within a predefined sampling
time, so it cannot be expected that there is enough spare time to shift control tasks between
robots in the network. In contrast, for slower-paced organizational tasks, like constructing
a map of the environment and, e.g., determining the general movement direction of the
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robots, it is often acceptable if one of the robots takes responsibility for solving the task.
If the corresponding robot leaves the network, there is usually enough time for another
robot to take over the responsibility. This is particularly true for tasks that can be safely
interrupted for a while. For instance, if the responsibility for mapping the environment
needs to be reassigned, the robots may be able to stop in a coordinated manner and stay
stationary until mapping is resumed and it is safe to proceed. This also highlights why
dynamic control must work at any time because only then can the robots pause the task
solution in a well-defined, coordinated manner. Furthermore, for time-critical dynamic
control, the computational effort should not increase substantially with the number of
robots cooperating, giving a further reason against the usage of a centralized entity since
the centralized problem usually grows in size at least linearly with increasing numbers
of robots. This suggests using either computationally inexpensive control methods, like
graph-algebraic control, or distributed MPC, where each robot optimizes only its own
control input.

Furthermore, apart from fully realizing the flexibility of a distributed robotic system, with
robots joining and leaving at any time, another self-imposed requirement of this thesis is
that the resulting scheme should be scenario agnostic. This means that, within the defined
scope of the task, the proposed scheme shall automatically accommodate different scenarios
without any manual, scenario-based tuning of parameters. In particular, this implies that
there must be a clear mathematical interface for defining the task and scenario, making
the task amenable to automation and making it implicitly clear which kinds of scenarios
can be handled. This once more highlights why the thesis’ model task of cooperative
transportation is a formidable benchmark case since it is accessible to the solution with
different numbers of robots, allowing for a wide range of different, challenging scenarios
due to different object shapes and environments to be considered. It poses challenges not
only with regard to control but also with regard to organization, with the robots needing
to automatically organize and reorganize around the object, e.g., when robots join or leave
the task solution. Hence, although the general architecture proposed in this chapter is
useful beyond this specific choice of task, cooperative object transportation will already
serve as an intuitively accessible example from now on. Moreover, due to the complexity of
a distributed control system, it is particularly crucial to design and test the scheme and its
implementation in meaningful simulation scenarios. Since the implementation can be very
challenging, particularly regarding communication and all the intricacies arising from it, it
is of utmost importance for the development process that these simulations share as much
of the program structure as possible with the hardware experiments. Therefore, also in
simulations, the final program structure should be present, with each robot’s control logic
running separately, exchanging data via communication. Finally, to reduce the amount of
communication necessary, the methods proposed in the thesis will strive to communicate
one type of data at most once per time step of the digital real-time control.
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4.2 Approach and System Architecture

Meeting the requirements discussed above, this thesis proposes a very modular system
architecture. Not only does the control logic of every robot run in separate programs
already in simulation, but even control and organization tasks are split into different,
communicating programs for each robot. Since all these programs communicate via
network protocols, they can run anywhere on a network, e.g., all on the same or on a
group of simulation computers, or on onboard processing units of physical mobile robots.
Furthermore, the architectural splitting of overarching organizational tasks from closed-loop
control tasks results in programs that can run concurrently, facilitating their operation on
different time scales. The latter can be necessary since the execution of an organizational
planning step may take considerably longer than the sampling time of the closed-loop
control. Indeed, the cycle time of planning tasks may even potentially vary significantly
over time, depending on the difficulty of the current situation. Subsequently, the entirety
of the logic controlling the time-critical, dynamic behavior of one dynamical system, e.g.,
of one mobile robot, is called a control agent. A program entity governing organizational
matters shall be denoted as an organization agent. Similarly, a robotic agent shall denote
the control and organization agents associated with one robot.

The proposed design paradigm is vastly different from the classic paradigm encountered in
non-distributed robotics. The procedures executed by a robot operating on its own can be
categorized into sensing, planning, and control [Sharir89], which are also usually executed
in this order and then repeated. For a robotic agent cooperating with others in a distributed
fashion, sensing is supplemented by communication since not all information is gathered by
onboard sensors but also communicated by the other robotic agents. Similarly, individual
planning is supplemented by organization, which can be defined as those planning tasks
that need to be coordinated between the robots, leading to a semantic program structure
as illustrated in Figure 4.1. Therein, parts that rely on communicated information are
shaded in green. However, it would be short-sighted to perceive communication and
organization as mere networked extensions of sensing and individual planning since the

sensing planning

control

commu-
nication

organization

Figure 4.1: Semantic program structure of a robotic agent cooperating with other robotic
agents to solve tasks in a distributed fashion
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resources used by the former two are not entirely under the authority of the robotic
agent itself. In particular, it is unclear when exactly and in which order information
is received from the other robotic agents. Hence, depending on the criticalness of the
information, the robotic agents either need to wait until all necessary information has
been exchanged or the designed methods need to be robust enough so that they can run
asynchronously, i.e., continuing to operate when certain information is still missing. Due
to the arguments given above, even within one robotic agent, there may be concurrent
processes running different tasks. The fact that it is not a priori clear when updated
information becomes available from a concurrently running process can even raise technical
issues such as the need to ascertain that data structures are not read while they are
overwritten with incoming information. Otherwise, algorithms may work with inconsistent
data, which can lead to undefined behavior. While this thesis does not intend to discuss
these more technical sides of such an architecture, it is worth noting that related issues in
concurrent computing have troubled computer science, far from robotics applications, for
decades [Dijkstra65, BeschastnikhEtAl16, HuangZhang16].

Following this way of thinking, if inspected in more detail, the actual structure proposed
to solve practical tasks is considerably more involved than in the schematic from Fig-
ure 4.1. For simulation purposes, where also a simulator has to be integrated, the software
architecture takes the shape illustrated in Figure 4.2. Each light-gray box indicates a
program running separately from the others, exchanging data with the others only via
communication. The larger, dark-gray boxes with index tabs organize these programs
into semantic groups, indicating their purpose. Each colored, outward-pointing arrow-like
symbol indicates that the corresponding program is publishing data on a communication
channel. Similarly, the corresponding opposing symbol indicates that the program is
subscribed to a communication channel. Each color corresponds to one channel. While
different channel configurations are conceivable, the given example is suitable to illustrate
which program needs to exchange data with which other program. In practice, it can
make sense for each robot to use its own set of channels so that, e.g., the control inputs of
different robots are published on different channels. In Figure 4.2, without loss of generality,
these are subsumed to one channel for each type of data for a more compact representation.
Each robotic agent consists of a control agent and one or several organization agents. The
control agent comprises all time-critical tasks and should be executed at a short, constant
sampling rate. Apart from dynamic control, time-critical tasks usually also include some
form of local mapping and individual navigation so that, e.g., collisions with obstacles can
be avoided. In contrast, slower-paced global planning is part of an organization agent, of
which there may be multiple if different organizational tasks shall be solved in a decoupled
manner. In many situations, it can be desirable to manipulate the ongoing experiment
in real time, e.g., to let robots spontaneously join or leave the task solution at the user’s
behest. This can be done via the event agent, which reads user inputs and publishes event
messages, which are received by all agents whom it may concern.
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Figure 4.2: Proposed software architecture for the cooperative task solution with a group
of simulated robots
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Since the tasks are distributed over the network, also all information generated in the
course of a simulation is distributed. However, to be able to work with and learn from the
results of a simulation, it is important to gather and record all critical information in one
place. By nature, the most critical information is collected and generated by the simulation
agent. Hence, it also stores the result data, as indicated by the symbol with the floppy-disk
pictogram. The robot agents may send additional debug data to the simulation agent to
aggregate data relevant to the development process in one place. For instance, this data
may be read by a visualization agent after the simulation has concluded, automatically
creating and storing visualizations, e.g., animated sequences depicting the behavior of the
robots over time. During usage, it is most practical to execute the visualization agent
and the simulation agent on the same machine, reading and writing from and to the same
memory.

Structure-wise, if experiments involving real-world hardware shall be performed, it merely
suffices to replace the simulator with robotic hardware. Then, the control inputs, corre-
sponding to the dark-blue channel, are received and executed by the robotic hardware.
Conversely, onboard sensors or an external tracking system publish the state information
and sensor data needed by the robotic agent. Prospective experiments involving real-world
hardware give a reason why it can make sense to split the simulator into two concurrently
running program types, namely the simulation and sensor simulation agents, as it is done
in Figure 4.2. The simulation agent takes care of the time integration of all differential
equations modeling the overall system consisting of the robots and their workspace. For
instance, this includes the model equations of the individual robots and the dynamics of
contacts between robots and objects in the workspace, e.g., the object to be transported in
a cooperative transportation scenario. For mapping, navigation, and obstacle avoidance,
however, robots also need some form of sensors to perceive the environment, e.g., light
detection and ranging sensors that deliver distance measurements to surfaces surrounding
the robot. These need to be simulated, too, which is the responsibility of the sensor
simulation agent. Since these kinds of sensors can be comparatively expensive and are
often not in the focus of research on dynamic control, it can be desirable to keep simulating
them even when using real-world hardware, alleviating the need to equip many robots
with such a sensor. Then, the real-world robot merely replaces the simulation agent and
not the whole simulator. It is even conceivable with this structure that some robots use
hardware sensors only, while others rely on simulated sensors.

A significant challenge posed by a structure as distributed as that of Figure 4.2 is how to real-
ize the communication without any centralized entity. For instance, the robot operating sys-
tem (ROS), an open-source middleware that has become very popular in robotics research
and applications, relies on a single master node in the network, facilitating the peer-to-peer
communication [QuigleyEtAl09]. While there exist extensions [TiderkoHoellerRöhling16],
the fundamental design principle is still at odds with distributed robotics. Therefore, the
applications in this thesis do not rely on ROS for communication, but make use of the
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open-source lightweight communications and marshalling (LCM) library, which functions
in a truly distributed fashion [HuangOlsonMoore10] and fits well to the publish-subscribe
pattern described above. Furthermore, it relies on UDP multicast to communicate the
data in the form of individual messages from the publishers to the subscribers, which
corresponds well to typical communication topologies in distributed robotics. A message
sent by one robotic agent can be of interest to potentially many of the other robotic agents.
Hence, if unicast communication were employed, potentially even via TCP, communication
links between the sending agent and each receiving agent would need to be established and
the message would need to be sent individually to each recipient. Similar reasons, together
with doubts about the real-time capabilities of the original ROS, have recently also sparked
the development of ROS2, a new, profoundly different version of the classic robot operating
system [ErősEtAl19, PuckEtAl20]. Thus, research projects which are not only looking for
a communication library may also consider the usage of ROS2 in the future, since the
robotic operating system can be seen as a whole open-source ecosystem giving access to a
wide range of tools and algorithm implementations useful to robotics. However, for this
thesis, a pure communication library suffices. Having now devised the general schematic
of a software architecture tailored to distributed robotics, it seems advisable to look at
robotic hardware that can serve as a powerful demonstrator for research on distributed
robotics.

4.3 A Custom Mobile Robot for Cooperative Tasks

While distributed robotics predominantly seems to be a challenge with regard to control and
organization algorithms, and, therefore, with regard to software, it can also greatly benefit
from hardware appropriate for the task. In particular, research on different problems
and the evaluation of different solution approaches may require a swift reconfiguration of
hardware and software. Therefore, it is beneficial to have full authority over all aspects of
the robotic hardware and the onboard software. This line of thought and research experience
with different robotic hardware [EbelSharafian ArdakaniEberhard17a, EbelEtAl21] have
lead to the decision to design a custom mobile robot for the purposes of this thesis and
beyond [EbelWahrenLuo20]. The goal of this section is to introduce and intently analyze
this custom robot design. To that end, the first subsection starts out with a more detailed
inspection of the hardware requirements of a robot for research on distributed control
and organization, with the resulting robotic hardware being explained subsequently. The
second subsection deals with building a mechanical model of the robot. The model is
designed in a way to provide a first insight into whether it meets the dynamic requirements
formulated at the outset. Furthermore, in later chapters, the model will prove useful to
evaluate the performance of control and organization schemes in meaningful simulation
scenarios.
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4.3.1 Hardware Design

Concerning the desired mechanical properties of the robot, maneuverability is the main
focus. At best, the robot should be able to move omnidirectionally, meaning that the
robot can move into any direction at any time if inertia effects are neglected. Hence, the
movement capabilities should restrict the possible fields of application as little as possible
so that the designed robot may also be useful to applications beyond those envisioned in
this thesis. Furthermore, this allows an analysis of distributed control and organization
methods that is not clouded by kinematic particularities of the robots employed. However,
while the omnidirectional movement capabilities make it easier to use the robot in various
applications, the derivations below will show that the description of the robot’s kinematics
becomes more intricate than for a more classic, non-omnidirectional robot.

Moreover, the designed robot should be easy to build and maintain, with parts either being
readily available or, if need be, easy to manufacture, which is of particular importance
for research on distributed robotics since a greater number of robots needs to be built
and maintained to always be in a fully functional state. The robot should not merely be
a platform for single-purpose research but also a tool useful in other research projects.
Therefore, it should be easily extensible, both with regard to hardware as well as with
regard to software, meaning that the onboard processing unit should be easy to program
for. Since distributed robotics requires the exchange of data between cooperating robots,
it should also have built-in wireless communication capabilities and still possess sufficient
real-time control capabilities to run fast, low-level motor controllers, evaluating the motor
encoders’ angular velocity signals for feedback purposes and generating the pulse-width
modulated motor supply voltages. The Beaglebone Blue [BeagleBoard.org Foundation]
is a single-board computer meeting all of these requirements, both concerning wireless
communication and real-time computation, making it the onboard computer of choice
for the robot designed for this thesis. The board allows the direct connection of up to
four DC motors and corresponding motor encoders. Thus, only one computation device
is necessary to meet the fundamental requirements, keeping the robot design simple by
using fewer individual parts. Apart from wireless network communication, it offers enough
options to directly connect an additional computation device by wire, e.g., via serial
communication. Hence, if algorithms with computational requirements exceeding the
onboard capabilities shall be run in real time on the robot, an additional high-performance
single-board computer can be added to the robot, handling computation-intensive tasks
while the Beaglebone still deals with low-level motor control.

To obtain the desired omnidirectional movement capabilities, the robot uses four so-
called Mecanum wheels [Ilon75], which is a popular setup for omnidirectional mobile
robots [WampflerSaleckerWittenburg89, ZimmermannEtAl16, ZeidisZimmermann19]. An
independent suspension for each wheel ensures sufficient contact of the wheels to the
ground. Figure 4.3 shows different perspectives of a Mecanum wheel as it is used for
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Mi

Mi

Figure 4.3: Different perspectives of a Mecanum wheel as used on the custom mobile robot

Figure 4.4: Photographs of the custom mobile robot

the robot. To propel the robot, a motor is used to exert a moment about the axis of
the wheel as it would be done for a regular wheel, see moment Mi in the figure. The
wheel’s main body is rigid, with eight rollers mounted along the circumference of the
wheel. The rollers can rotate freely about the axis they are mounted on, which is inclined
by an angle of 45◦ to the rotation axis of the wheel’s main body. The assembled robot,
equipped with four of these wheels, can be seen in Figure 4.4. It has a circular footprint
of radius rR = 0.145 m. The robot consists of three layers on top of one another, with the
lowest layer consisting of the suspension, wheels, and motors, the second layer housing
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the onboard computer, and the top layer being a marker plate useful to track the pose
of the robot with an external tracking system. Due to the wheels employed, the robot’s
kinematics and thereby the mechanical modeling of the robot are especially interesting
and will be treated subsequently.

4.3.2 Mechanical Model

While it is the goal that the custom robot is very maneuverable, with outer control
loops not having to take into account specific particularities like non-holonomic kinematic
constraints, a more detailed look does reveal some peculiarities. As in every modeling
task, some idealizations and simplifications are prudent. The mechanical model shall
be useful to study and represent the general movement capabilities. It hence seems
particularly sensible to neglect effects that may heavily depend on parameters that are a
priori unknown and may only be identified by experimentation with a finished hardware
robot. Therefore, first and foremost, it is assumed that the wheels roll without slipping
and that the robot moves in the plane. All parts of the robot are assumed to be rigid.
Furthermore, apart from the reaction forces arising from rolling without slipping, friction
is neglected. It is assumed that, at any time, there is only one contact point of each wheel
with the floor, with it always being at the same position relative to the wheel’s center.
The wheels’ width is considered to be small so that moments proportional to the wheel
width can be neglected. Similarly, the diameter of the rollers on the circumference of the
wheels is considered to be negligibly small. Prior works studying the dynamics of robots
employing the same type of wheels, although in a different layout, arrive at very similar
assumptions [ZimmermannEtAl16, ZeidisZimmermann19].

To get started with the kinematic description of the robot, Figure 4.5 gives a stylized
drawing of those parts of the robot crucial for the kinematics. As the figure shows, the
wheels, which are symbolized by white rectangles with diagonal lines, are mounted in a
rotation-symmetric way. The diagonal lines indicate the rollers’ directions at the underside
of the wheel, with R1 to R4 being the wheels’ centers of mass. It is assumed that the wheels’
contact points with the ground are always exactly below the wheels’ centers. The wheel
arrangement is rather untypical for robots with Mecanum wheels. In setups appearing in
the literature, Mecanum wheels are usually mounted like wheels on a traditional car, with
the robot taking a rectangular shape [DickersonLapin91, ZeidisZimmermann19]. However,
a round robot with a rotation-symmetric wheel arrangement seems to suit better the
omnidirectional movement characteristics, which is why the depicted layout is chosen in
this thesis.

To describe the kinematics, some additional notation is necessary. When considered
independently, each wheel can roll freely into the direction orthogonal to the axis of the
roller that is in contact with the ground. The velocity components of the wheel centers
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Figure 4.5: Schematic illustration of the custom mobile robot depicting the quantities
necessary for the description of the robot’s kinematics

along these directions are denoted as vir, i ∈ {1, . . . , 4}, with positive directions as depicted
in Figure 4.5. The origin OR of the body-fixed frame of reference KR is located in the
robot’s center of mass C, with the orthogonal projections of the wheels’ centers of mass Ri

onto the xR-yR-plane having the distance R to the origin OR. The angle measured in
the mathematically positive direction from the xR-axis to the vector pointing from OR

to Ri is denoted as αi. Similarly, βi denotes the angle measured from the xi-axis to the
direction of the xR-axis, whereas γi is measured from the vector vir to the xi-axis. The
wheels’ angular velocities about the yi-axis are denoted as ϕ̇i, i ∈ {1, . . . , 4}. The robot’s

angular velocity about the zR-axis is denoted as ϕ̇R, whereas RvC =
[

RvCx
RvCy

]
T

is the
robot’s absolute velocity in the xR-yR-plane represented in the basis of the body-fixed
frame. The absolute velocity components of the wheels’ centers in the directions of the xi-
and yi-axes are denoted by vRi,xi

and vRi,yi
, respectively. The wheels are rolling without

slipping, meaning that the velocity component of wheel i’s contact point with the ground
into the direction perpendicular to vir is zero. With the wheels having a radius of r, this
gives the kinematic relationship




vRi,xi

− r ϕ̇i

vRi,yi





T



sin(γi)
cos(γi)



 = 0 ⇐⇒



vRi,xi

vRi,yi





T



sin(γi)
cos(γi)



 =




r ϕ̇i

0





T



sin(γi)
cos(γi)



 . (4.1)

Furthermore, since the robot chassis is assumed to be rigid, each wheel center’s planar
absolute velocity RvRi

represented in the basis of the body-fixed frame can be expressed
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in the form

RvRi
=




1 0 −R sin(αi)
0 1 R cos(αi)





︸ ︷︷ ︸

=:Ci







RvCx

RvCy

ϕ̇R







. (4.2)

Transforming to the wheel coordinate system yields



vRi,xi

vRi,yi



 =




cos(βi) − sin(βi)
sin(βi) cos(βi)



 RvRi
. (4.3)

Finally, inserting Equation (4.2) into Equation (4.3) and the result into Equation (4.1)
allows to solve for ϕ̇i, which results in

ϕ̇i =
1
r

[

cos(βi) + sin(βi)
cos(γi)
sin(γi)

− sin(βi) + cos(βi)
cos(γi)
sin(γi)

]

Ci







RvCx

RvCy

ϕ̇R







. (4.4)

By inserting different values for the angles αi, βi, and γi with γi 6= kπ, k ∈ Z, this
kinematic relationship holds for a wide variety of wheel configurations. Using the values
corresponding to the setup shown in Figure 4.5 yields

ϕ̇1 =
1
r

(
RvCx − RvCy − R ϕ̇R

)

, (4.5)

ϕ̇2 =
1
r

(

−RvCx − RvCy − R ϕ̇R

)

, (4.6)

ϕ̇3 =
1
r

(

−RvCx + RvCy − R ϕ̇R

)

, (4.7)

ϕ̇4 =
1
r

(
RvCx + RvCy − R ϕ̇R

)

, (4.8)

which can be expressed equivalently in the form

RvCx =
r

2
(ϕ̇1 − ϕ̇2) , (4.9)

RvCy =
r

2
(ϕ̇3 − ϕ̇2) , (4.10)

ϕ̇R = − r

2R
(ϕ̇1 + ϕ̇3) , (4.11)

ϕ̇4 = ϕ̇1 + ϕ̇3 − ϕ̇2. (4.12)

Evidently, Equations (4.11) and (4.12) are integrable, and therefore, define holonomic
constraints. Given suitable initial conditions, they allow, e.g., to express ϕ4 and ϕR in

terms of ϕ1, ϕ2, and ϕ3. Hence, subsequently, the generalized velocities s :=
[

ϕ1 ϕ2 ϕ3

]
T

are used to describe the system dynamics, with the vector of generalized coordinates q :=
[

xC yC ϕ1 ϕ2 ϕ3

]
T

fully describing the current configuration of the robot.

Interestingly, the constraints (4.9) and (4.10) are non-integrable and hence non-holonomic,
as it is also the case for the traditional wheel arrangement [ZeidisZimmermann19]. This
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can be shown by means of a short calculation as follows. Denoting as rC =
[

xC yC

]
T

the
position of the robot’s center of mass in the inertial frame of reference, it holds that

q̇ =













ẋC

ẏC

ϕ̇1

ϕ̇2

ϕ̇3













=













r
2

cos(ϕR) r
2

(sin(ϕR) − cos(ϕR)) − r
2

sin(ϕR)
r
2

sin(ϕR) − r
2

(sin(ϕR) + cos(ϕR)) r
2

cos(ϕR)
1 0 0
0 1 0
0 0 1













s

=: Gs =: g1 s1 + g2 s2 + g3 s3 (4.13)

with ϕR = ϕR(q) being a function of the generalized coordinates q, obtained by integrating
Equation (4.11), and g1, g2, g3 being the columns of the matrix G. Essentially, showing
the non-holonomic character of the constraints comes down to calculating the so-called
Lie brackets

[gi, gk] =
∂gk

∂q
gi − ∂gi

∂q
gk ∀ i 6= k, i, k ∈ {1, . . . , 3}. (4.14)

If non-zero, a Lie bracket corresponds to a motion consisting of the ordered concatenation of
infinitesimal, non-commuting motions in the directions of gi, gk, −gi, −gk, see [Woernle16].
Hence, if the direction of the resulting net motion obtained through the Lie bracket is
linearly independent from the columns in G, the system can reach generalized coordinates
that do not lie in the direction of its admissible velocities. Consequently, in this case, one of
its kinematic constraints on velocity level is non-integrable and, therefore, non-holonomic.
For instance, performing the calculation for the kinematic relationship from Equation (4.13)
yields

ĝ1 := [g1, g2] =
[

−
√

2 r2

4 R
sin

(

ϕR + π
4

) √
2 r2

4 R
cos

(

ϕR + π
4

)

0 0 0
]T

, (4.15)

ĝ2 := [g1, g3] =
[√

2 r2

4 R
cos

(

ϕR + π
4

) √
2 r2

4 R
sin

(

ϕR + π
4

)

0 0 0
]T

. (4.16)

Indeed, whereas the matrix G is of rank 3, the matrix Ĝ =
[

g1 g2 g3 ĝ1 ĝ2

]

, which
is composed of the columns of G together with ĝ1 and ĝ2, is of rank 5. Hence, it has full
rank. Therefore, following the theory from [MurraySastry93], the robot dynamics is indeed
subject to two non-holonomic constraints and the first-order system (4.13) is controllable.

The fact that non-holonomic constraints are present does have an influence on the choice
of suitable approaches to derive a kinetic model of the robot. For instance, Lagrange’s
equations of the second kind can lead to a model delivering wrong results in general
operating conditions [ZeidisZimmermann19]. Nevertheless, seeing the robot as a multi-
body system, it is straightforwardly possible to calculate the Newton and Euler equations
for each isolated body following Equations (2.3) and (2.4), expressing each kinematic
quantity in terms of the generalized velocities s, and eliminating the reaction forces and
moments, for which it can be helpful to use the fact that they are orthogonal to the free
movement directions. For the usage of the model in later chapters, it is necessary that
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the simulated robot can exert forces on objects to be transported, i.e., it shall be able to
push objects. To that end, subsequently, friction forces between the robot and objects are
neglected and, hence, it is assumed that contact forces between the robot and objects act
orthogonally on the circumference of the robot chassis. Notation-wise, the contact forces

acting on the robot are subsumed in the vector f a
R =

[

fRx fRy 0
]
T

, which may depend
on the generalized coordinates and velocities. Expressing the latter in the body-fixed
coordinate frame of the robot yields

Rf a
R =

[
RfRx

RfRy 0
]
T

=
[

cos(ϕR) fRx + sin(ϕR) fRy − sin(ϕR) fRx + cos(ϕR) fRy 0
]
T

. (4.17)

Furthermore, the motor moments propelling the robot are denoted as Mi, i ∈ {1, . . . , 4},
rotating wheel i about the yi-axis in the mathematically positive direction, cf. Figure 4.5.
With this, the equations of motion describing the evolution of the generalized velocities
take the form

ϕ̈1 = cR
1 (ϕ̇1 + ϕ̇3) (−ϕ̇1 + 2ϕ̇2 − ϕ̇3) +

(

cR
2 + cR

3

)

M1 + cR
3 (M2 + M4)

+
(

cR
3 − cR

2

)

M3 + cR
4

(
RfRx − RfRy

)

, (4.18)

ϕ̈2 = cR
1 (ϕ̇1 + ϕ̇3) (ϕ̇3 − ϕ̇1) +

(

cR
2 + cR

3

)

M2 + cR
3 (M1 + M3)

+
(

cR
3 − cR

2

)

M4 − cR
4

(
RfRx + RfRy

)

, (4.19)

ϕ̈3 = cR
1 (ϕ̇1 + ϕ̇3) (ϕ̇1 − 2ϕ̇2 + ϕ̇3) +

(

cR
2 + cR

3

)

M3 + cR
3 (M2 + M4)

+
(

cR
3 − cR

2

)

M1 + cR
4

(
RfRy − RfRx

)

(4.20)

with positive constants cR
1 , cR

2 , cR
3 , and cR

4 , which depend on geometric and material
properties of the robot. Apart from geometric quantities already introduced, they depend
on the mass of the robot chassis mc, the mass of an individual wheel mw, the moment of
inertia Jc of the chassis with respect to the zR-axis, the principal moment of inertia Jw1 of
an individual wheel with respect to the yi-axis of wheel i, and the moment of inertia Jw2

of an individual wheel with respect to its other two principal axes. The four wheels
are assumed to have the same geometric and material properties. The constants in the
equations of motion evaluate to

cR
1 =

mt r3

16 R
(

mtr2

4
+ Jw1

) , cR
2 =

1

2
(

mt r2

4
+ Jw1

) , (4.21)

cR
3 =

1

4
(

Jt r2

4 R2 + Jw1

) , cR
4 =

cR
2 r

2
(4.22)

with the complete robot’s mass and relevant principal moment of inertia mt = mc + 4 mw

and Jt = Jc + 4 Jw2 + 4 mw R2, respectively.

To simulate the robot’s motion, given appropriate initial conditions, Equation (4.11) needs
to be integrated alongside with the Equations (4.18)-(4.20), at least in the case of a non-
vanishing contact force f a

R 6= 0. Similarly, since the evolution of the position of the robot’s
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center of mass is usually a quantity of particular interest and also necessary to determine
potential contact forces, it makes sense to additionally integrate the first two lines of
Equation (4.13) alongside with the other equations. In any case, Equations (4.18)-(4.20)
reveal that the dynamics of the wheels’ angular velocities are heavily coupled. It will be
interesting to see what this means for the desired high-level of maneuverability. To that
end, the subsequent section presents a brief simulative analysis revealing the key dynamic
properties of the chosen robot design with its unusual wheel setup.

4.3.3 Simulative Analysis

The striking property of the introduced robot’s dynamics is that, indeed, for specific
settings of the motor moments, it lets the robot perform a pure translatory motion into
any direction, yielding the desired omnidirectional behavior. This is the required property
most crucial for the object transportation benchmark case of this thesis since it means
that the robot can exert pushing forces into any direction, independent of the robot’s
current orientation. Hence, the robot can contribute to the transportation of objects
without reorienting itself even if its orientation is arbitrary. Pure translation can be
achieved for motor moments that satisfy M3 = −M1 and M4 = −M2. The two plots
on the left-hand side of Figure 4.6 depict a simulation result for this setting, with the
constant motor moments M1 = −1 · 10−3 N m and M2 = −2 · 10−3 N m and the robot
consequentially accelerating along a perfect straight line. For these and the following
simulations, the relevant parameters are set to mc = 2 kg, mr = 0.075 kg, R = 0.115 m,
r = 0.03 m, Jc = 0.021 kg m2, Jw1 = 3.375 · 10−5 kg m2, and Jw2 = 2.25 · 10−5 kg m2. In
the examined simulations, the robot starts with its initial conditions set to zero, i.e.,
with q(0) = 0 and ϕR(0) = 0, with the chassis-fixed frame KR and the inertial frame
of reference KI having the same orientation for ϕR = 0. Similar to the pure translatory
motion, but less crucial for this thesis, a pure rotatory motion about its center of mass
can be executed if all motor moments are set to the same values. This can be seen on the
right-hand side of Figure 4.6, which uses the settings Mi = −1 · 10−3 N m, i ∈ {1, . . . , 4}.

However, for general motor moments, very arcane trajectories can be observed, with
a visible oscillatory behavior, which is also observed for a traditional wheel lay-
out [ZeidisZimmermann19]. An example can be seen in Figure 4.7 in which the constant
motor moments M1 = −1 · 10−3 N m, M2 = −2 · 10−3 N m, M3 = −3 M1, and M4 = −2 M2

are applied. Hence, the very well-behaved impression of the dynamics gained from Fig-
ure 4.6 should not be taken for granted. This observation may raise concerns since, usually,
motor moments are not set or controlled directly on real-world hardware robots. It is hard
to measure or estimate the current motor moments in practice, whereas it is comparatively
easy to measure or estimate the wheels’ angular velocities. Therefore, it is usually the
wheels’ angular velocities which are controlled to reach desired values, which, by means of
the kinematic relationships from Equations (4.5)-(4.8), correspond to the desired transla-
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Figure 4.6: Simulation results of a pure translatory motion (M3 = −M1, M4 = −M2),
depicted on the left-hand side, and of a pure rotatory motion (M1 = · · · = M4), depicted
on the right-hand side
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Figure 4.8: Simulation result with the angular velocities of the robot’s wheels being
controlled by four independent PI controllers to let the robot reach desired translational
and angular velocities, designed to show the robot’s directional stability

tional and angular velocities of the robot. Often, the low-level motor controllers governing
the angular velocities use control approaches that are computationally lightweight to
be executed at a high sampling rate on computationally limited but real-time capable
microprocessors. Hence, it is a common approach to perceive each wheel as a single-input
single-output system and to control its angular velocity, e.g., with a PID controller to
reach the desired angular velocity. For this reason, a final simulation setup in this section
considers a setup exactly as described, with four PI controllers, one for each wheel, and the
desired angular velocities of the wheels being calculated using the corresponding kinematic
relationships. As in a real-world robot, the motor moments are subject to constraints
and are saturated at an absolute value of 0.01 N m, with the PI controllers using anti
wind-up measures to prevent integration wind-up. The motor controllers are implemented
in discrete time with a sampling time of 0.01 s and the proportional and integral gains are
set to kp = 20 · 10−3 N m s

rad
and ki = 1 · 10−3 N m

rad
, respectively. An exemplary, representative

simulation result intended to show the robot’s directional stability is displayed in Figure 4.8,
with the desired velocities ẋC,d = 0.1 m/s, ẏC,d = 0.2 m/s, and ϕ̇R,d = −0.1 rad/s, respec-
tively. As the results show, even when not directly setting the motor moments, this control
structure lets the robot swiftly attain the desired translational and angular velocities,
without a potential undesired, oscillatory behavior being visible. This also holds true if,
in a more practical setting, the robot is tracking changing velocity setpoints under the
influence of measurement noise, as the simulation result from Figure 4.9 shows. To obtain
this result, the desired velocities are set to ẋC,d(t) = a1 ωt cos(ωtt), ẏC,d = 2 a2 ωt cos(2 ωtt),
ϕ̇R,d = 0 rad/s with the parameters contained therein set to a1 = 1.5 m, a2 = 0.5 m, and
ωt = 0.1 rad/s. The simulated measurements of the four wheels’ angular velocities are
subjected to independent, identically distributed additive disturbances sampled from a
zero-mean Gaussian distribution with a standard deviation of 0.2 rad/s. The plot shows
the undisturbed simulated measurements, with the noise entering the control loop through
the controllers, which use the noisy measurement signals. Even without any filtering of
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Figure 4.9: Simulation result with the angular velocities of the robot’s wheels being
controlled by four independent PI controllers to let the robot track a changing velocity
setpoint, designed to result in a lemniscate-shaped trajectory

the measurement signals, the resulting lemniscate-shaped trajectory looks as desired, with
only moderate noise being visible in the robot’s translational velocities.

These very satisfactory results suggest that it is possible to use a cascade structure to
control the robot’s behavior. Since the low-level motor controllers act at a higher sampling
rate and can swiftly and accurately control the robot’s velocity within the relevant velocity
range, outer, slower control loops can directly set desired velocities for the inner motor
controllers, assuming that they are reached rapidly by the robot. This will motivate
and allow the usage of simple single-integrator models in overarching, distributed control
schemes that run at a lower sampling time than the motor controllers. In particular,
the overarching controllers can therefore be based on a model that is not subject to any
non-holonomic constraints.

Nevertheless, it is worth to recall that many effects have been neglected in the derivation
of the mechanical model in Section 4.3.2, especially since most of these would be hard
to parameterize accordingly, confounding the judgment of the fundamental movement
capabilities of the robot resulting mostly from its kinematic setup. However, the hardware
experiments shown in Chapters 5 and 6 will confirm that the real-world robot behaves as
desired when acting within an overarching closed loop. Building a more detailed model
and identifying corresponding parameters from experiments may still be a worthwhile
subject of research. This is because, e.g., all effects related to friction are practically
impossible to capture accurately in a model purely based on first principles, without
using real-world measurement data. In that regard, the robot may serve as an interesting
benchmark case for model identification and learning methods. A more detailed, data-
enhanced model may then prove valuable in use cases where the robot is employed in
an open-loop fashion, without using additional measurements that would allow to infer
the pose of the robot. As a matter of fact, although beyond the scope of this thesis,
the custom mobile robot has proved challenging and, thus, valuable for this purpose in
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another research project [EschmannEbelEberhard21]. Similarly, it has already been used
successfully in student projects that have employed the custom robot for purposes very
different from those of this thesis [Pabst19, Wahren20], highlighting that, indeed, the
design goals concerning the robot’s versatility and ease of operation have been met. With
the software structure and hardware design introduced and discussed in this chapter, the
stage is now set to develop very concrete control and organization schemes to, in the end,
successfully solve the challenging benchmark case of cooperative object transportation.
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Chapter 5

Distributed Control and

Organization for Cooperative

Robotic Behavior

The methodological contributions of this thesis are driven by the challenges posed by
employing a group of cooperating robots for a demanding transportation task. Nevertheless,
most of the methods to be devised in this chapter can be of great use in a wider variety of
tasks. Still, it is much easier to understand their purpose and significance at the example
of cooperative transportation. Recalling the introduction of the thesis, this thesis opts
for studying a non-prehensile transportation scenario in which robots push the object
to be transported. Characteristic to the approach of this thesis, the task is interpreted
as a special formation control task, allowing to leverage the full breadth of distributed
control theory. In consequence, fitting to the architecture introduced in Chapter 4, the
task solution is split into two main parts – an organization scheme, determining formations
useful in the current situation, and a distributed control scheme governing the coordinated
motion of the formation to translate and rotate the object as desired. The approach
builds upon [EbelEberhard18, EbelEberhard19, EbelEtAl21]. The subtasks induced by
the fundamental concept serve as a methodological road map for the research undertaken
in this chapter and as an intuitive model example wherever more practical insight is
immediately necessary to fully grasp the proposed methods. Hence, taking a look at the
semantic structure of the task solution approach by means of Figure 5.1 gives a glimpse of
what is to come in this chapter. Of course, being focused on semantics, the illustration
does not reflect how the subtasks are actually executed. Instead, they are designed to fit
into the distributed software architecture introduced in Chapter 4 and will be executed
that way in the next chapter. Following Figure 5.1, the robots first need to agree on a
configuration, or formation, around the object’s edges that is useful to manipulate the
object’s pose as necessary. This step is referred to as formation synthesis from now on.
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Figure 5.1: Semantic structure of the proposed solution approach to cooperative trans-
portation, following [EbelEtAl21]

Later, the formation synthesis only needs to be re-executed when the current formation is
not suitable anymore due to changing circumstances like, e.g., an altered transportation
direction of the object. Hence, an open question that needs answers in this chapter is how
to determine when exactly it is the case that a new formation needs to be synthesized.
Having found a favorable configuration, the robots also need to negotiate self-reliantly
which robot takes which position since there is no centralized entity telling each robot
which position to pick, which would make it considerably easier to avoid conflicts. Based
on an agreed-upon positioning of the robots around the object, and assuming that the
robots know the path the object shall be transported along, suitable setpoints or reference
values have to be calculated for the distributed formation controllers in order to make the
object follow the desired path. Finally, the individual motor controllers of the robots close
the loop.

Aiming to tackle all of these tasks, Section 5.1 starts the chapter with a detailed look
at formation control, first and foremost proposing an unconventional setup based on
distributed model predictive control. A setup based on more traditional graph-algebraic
considerations is introduced afterwards, mimicking the DMPC controller’s properties as
closely as possible. This allows a simulative and experimental comparison between the
two. Of course, the proposed controller setups are useful far beyond cooperative object
transportation. The treatment of formation control in this chapter is closely based on the
work published in [EbelEberhard21], which focuses solely on formation control without the
context of its role in an overarching task, highlighting the relevance of the findings on their
own account. Section 5.2 continues with organizational matters, in particular formation
synthesis. Building upon and following [EbelEtAl21, EbelEberhard19, EbelEberhard18],
the formation synthesis problem is formulated in terms of an optimization problem, with
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the goal to obtain a scenario-agnostic scheme that can accommodate almost any polygonal
object to be transported, including non-convex ones. As hinted at in the introduction, this
greatly distinguishes the approach from prior approaches in the literature. The properties
of the optimization-based problem formulation inspire a novel, distributed version of an
augmented Lagrangian particle swarm optimizer, which, again, may be a tool universally
useful, including other organizational tasks in distributed robotics and different fields
of application. The section is concluded with the treatment of the position negotiation,
which, by its nature, is a bit more specific in its applicability to the object transportation
scenario, although it may be possible to draw some generalizing conclusions from it. Finally,
Section 5.3 deals with navigation, i.e., the mapping of the workspace and the planning
of paths through it, both for the individual navigation of each robot and for the global
planning problem of finding a path for a general, non-convex polygonal object. The latter
problem, therefore, even furnishes an extension of what is seen in Figure 5.1.

5.1 Formation Control

Formation control has already been briefly touched upon in the introduction to graph-
algebraic control in Section 3.3, defining it as a group of mobile robots coordinating their
relative positions to one another or, in a broader sense, as a group of systems coordinating
their states relative to one another. While the methods described subsequently may
generalize to the latter, it is the literal, robotic sense that is relevant to the thesis.
Nevertheless, the literal definition still leaves much room for a wide range of formation
control tasks and setups. An example is the question of whether the robots shall move as
a whole while staging in the formation. If so, it needs to be distinguished whether they
shall move the formation to a specific position, which is referred to as position control
subsequently, or with a specific velocity, which is called velocity control from now on.

In the position-control case, the question arises which position within the formation shall
be used for tracking. It can be practical to define a desired absolute position for one
of the robots while the remaining robots merely follow this leading robot in formation.
Alternatively, a so-called virtual leader may be used. It corresponds to a relative position
within the formation that is not occupied by any physical robot. This choice also influences
the communication structures that can be used. For instance, when using a physical
leading robot, a chain-like communication graph, as it appeared earlier in Figure 3.2, can
be employed.

As these considerations show, a treatise of formation control needs a precise problem
definition and needs to focus on a specific class of problem setups if precise conclusions shall
be drawn. In consequence, for the purposes of this thesis, the specifications of the formation
control task must be distilled from the requirements of its usage in the transportation task.
Controlling the formation’s absolute position may be suitable for highly precise positioning
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of the formation and, thereby, of the object transported alongside it. The velocity-control
setup may, e.g., be useful for transportation over longer distances at prescribed velocities.
Hence, both tasks will be considered subsequently. In the position-control case, it is
especially important to allow the independent adjustment of the accuracies of controlling
the robots’ relative positioning and of the absolute positioning of the formation as a
whole. This rules out the simple setup of a leading robot that is followed by the other
robots using a sparse, e.g., chain-like communication structure. In fact, since there is
no apparent reason why specific robots shall be treated differently in the transportation
process, an undiscriminating communication structure seems appropriate. Therefore, in
the position-control case, the formation controllers proposed in this thesis control the
position cx ∈ R

2 of the formation’s geometric center to the desired position cxd(t) ∈ R
2,

with only planar motions being studied. At the same time, the robots shall maintain a
given positioning relative to the formation center. In the velocity-control case, merely the
robot positions relative to the formation center are controlled, while the whole formation
shall move with the velocity cvd(t).

By definition, the geometric center is a linear combination of the robots’ positions and,
therefore, each formation controller needs the location of every other robot. Hence,
the communication graph must be complete, with each robot exchanging data with
every other robot. While this seems limiting at a first glance, the software architecture
introduced in Chapter 4 lets all robots operate on the same communication network
anyway, relying on multicast communication to exchange data, which is well-suited to
these communication requirements. Furthermore, without changing the formation control
methods themselves, it is possible to define multiple sub-teams of robots, with each
formation controller only considering data from its sub-team, thereby limiting the burden
posed for the communication infrastructure.

Apart from the requirements concerning communication, formation control also brings
about some more subtle requirements regarding common reference frames. If the formation
center’s absolute position is controlled, the robots need a common inertial frame of
reference KI in which the desired position is defined, whereas a non-inertial frame, moving
with the formation, suffices if merely the robots’ relative positioning is of interest. In any
case, a common sense of direction, which is brought about automatically if the robots have
a common reference frame they agree on, is necessary if the orientation of the formation
shall be controlled. If objects of general shapes shall be transported efficiently through an
environment, it is often necessary to rotate them along with the formation. For this reason,
in the following, it is required that the robots share a common frame of reference. Finally,
each robot shall have a unique identification number that it transmits along with all
information published on the network, allowing the robots to associate and order incoming
information reliably.

With the described requirements in mind, some notation needs to be introduced to
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formulate the problem and the controllers in a mathematical manner. As it is the case
later for the transportation process, robots may join and leave the formation. Hence, out
of N robots present, only a time-variant subset, consisting of Na robots and defined by
the index set Ra :=

{

i1, . . . , iNa(t)

}

⊆ R := {1, . . . , N}, is actively participating in the
task solution at time t ≥ 0. Therein, the indices are ordered in ascending order, i.e.,
i1 < i2 < · · · < iNa(t). The position of robot i ∈ {1, . . . , N} at time t is denoted by ix(t).
Henceforth, the formation’s geometric center is given by cx(t) =

∑

i∈Ra(t) ix(t)/Na(t).
Subsequently, the notation introduced in Section 2.1 will prove handy to indicate in
which reference frames and coordinates a quantity is given. As usual, quantities without
any specific notational indication are given in the coordinates of and relative to the
inertial frame of reference. The reference frame KF(t) shall move with the formation,
with its origin moving with the formation’s geometric center. The desired formation
shape Fd(t) :=

{
F̌
ixd(t) | i ∈ Ra(t)

}

is defined by the desired positions F̌
ixd(t) of the robots

relative to the formation’s geometric center in the coordinates of the moving frame KF(t).
Hence, by rotating KF(t) relative to KI, also the desired formation shape is rotated in
the plane. By definition, it must hold that

∑

i∈Ra

F̌
ixd(t) = 0. As long as it does not

give rise to ambiguities, the time-dependency of time-variant quantities may subsequently
be omitted in the notation to the benefit of brevity. Motivated by the findings from
Section 4.3 with regard to the movement capabilities of the considered robot design, for
the synthesis of the distributed formation controller, the robots are modeled as single
integrators, with robot i’s dynamics being given by iẋ = iu, with the control input iu ∈ R

2

being the robot’s velocity. The velocity values in the two directions shall not exceed umax

in absolute value. For simulation purposes, the model introduced in Section 4.3.2 is
utilized, resulting in a cascaded control structure with the local PI controllers controlling
the angular velocities of the wheels. As in Section 3.3, the stacked state and input

vectors x :=
[

i1
xT · · · iNa

xT

]
T ∈ R

nx and u :=
[

i1
uT · · · iNa

uT

]
T ∈ R

nu are useful
for controller derivation and analysis. For the chosen nominal dynamics, the dimensions
of the vectors evaluate to nx = nu = 2 Na. Furthermore, it will be useful to refer to
sub-blocks of matrices. To that end, row i and column j of a matrix V shall be referred
to by Vi,: and V:,j, respectively. Similarly, Vi1:i2,: with i1 ≤ i2 shall be the matrix block
including rows i1 to i2, whereas V:,j1:j2

with j1 ≤ j2 shall denote the block including the
columns j1 to j2. In the subsequent controller derivations, it is assumed that the controller
of robot ı̂ ∈ Ra is derived. In the first step, the DMPC-based controller is looked at.

5.1.1 DMPC-Based Formation Controller

The proposed DMPC controller is formulated in a discrete-time setting, employing the
control sampling time Ts, yielding the discrete-time dynamics x(k + 1) = x(k) + Tsu(k) =:

Ax(k) + Bu(k), k ∈ N0. It is worth emphasizing that, in general, the DMPC-based
approach is not limited to this dynamics since different linear dynamics can be inserted
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straightforwardly, with care mostly being required with regard to the constraints. The focus
on this dynamics is rather due to the overall control setup and type of robot considered.
Since, due to the distributed setup, robot ı̂ only decides on its own control input ı̂u, the
dynamics is reformulated to

x(k + 1) = Ax(k) + B:,2ı̂−1:2ı̂
︸ ︷︷ ︸

=:Be

ı̂u(k) +
[

B:,1:(2ı̂−2) B:,2ı̂+1:(2Na)

]

︸ ︷︷ ︸

=:Bp

















i1
u(k)

...

ı̂−1u(k)

ı̂+1u(k)
...

iNa
u(k)

















︸ ︷︷ ︸

=:up(k)

(5.1)

⇒ x(k + 1) = Ax(k) + Be ı̂u(k) + Bpup(k). (5.2)

The first task in designing the DMPC optimization problem is to develop a suitable cost
function, associating a higher cost with larger deviations from the formation shape. To
this end, it is useful to describe the formation through an output y = Cx ∈ R

ny , with
the output matrix C chosen differently depending on whether the position-control or
velocity-control case is considered. In the latter case, the DMPC controller is merely
occupied with attaining and maintaining the robots’ relative positions, motivating to
choose the output matrix to

Cv =










−1/Na + 1 −1/Na · · · −1/Na

−1/Na −1/Na + 1 · · · −1/Na

...
. . . . . . . . .

−1/Na · · · −1/Na −1/Na + 1










⊗



1 0
0 1



 ∈ R
2Na×2Na . (5.3)

Then, each pair of lines of the output corresponds to a robot position relative to the
formation center. Naturally, with rank(Cv) = 2 (Na − 1), there exist infinitely many states
to reach one desired output since the formation center may be located anywhere in the
plane as long as the relative positioning is maintained. This fits the earlier observations
from the introduction of graph-algebraic control. If the formation center’s position shall
also be controlled, the output matrix is instead chosen to

Cp =













1/Na 1/Na · · · 1/Na

−1/Na + 1 −1/Na · · · −1/Na

−1/Na −1/Na + 1 · · · −1/Na

...
. . . . . . . . .

−1/Na · · · −1/Na −1/Na + 1













⊗



1 0
0 1



 ∈ R
2(Na+1)×2Na . (5.4)

Chosen this way, the formation center’s prescribed position needs to be consistent with the
robots’ prescribed relative positions since the location of the formation center is entirely
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determined by those. Alternatively, the lines corresponding to one of the robots’ relative
positions can be deleted from Cp to obtain an invertible matrix. However, since this would
mean that one of the robots is, without constitutive reason, treated differently than the
others, the above choice seems more adequate.

Now, for a desired output yd that is kept constant for analysis purposes, formation control
comes down to tracking a setpoint yd with the output y = Cx so that y(t) converges to yd

as time t approaches infinity. If the output matrix C is set to Cv for the velocity-control
case, the desired output is defined as

yd =
[

ISF
F̌
i1
xT

d
ISF

F̌
i2
xT

d · · · ISF
F̌

iNa
xT

d

]
T

, (5.5)

whereas it is set to

yd =
[

cx
T

d
ISF

F̌
i1
xT

d
ISF

F̌
i2
xT

d · · · ISF
F̌

iNa
xT

d

]
T

(5.6)

for the position-control case with the output matrix Cp. Naturally, if the desired formation
shape changes, the desired output may change abruptly from one time instance to the next.
The same happens if the formation center’s desired position is changed from one time
instance to the next, e.g., to let the formation follow a path in the position-control case.
As delineated in Section 3.2.2’s introduction to distributed MPC, this can be challenging
for many traditional schemes relying on stabilizing terminal ingredients due to the setpoint
change potentially making the optimization problem infeasible. The candidate scheme
from [FerramoscaEtAl13], which was deemed promising in Section 3.2.2, provides a possible
remedy in the form of an artificial setpoint. The artificial setpoint corresponds to a feasible
steady state and input pair. When employing a terminal equality constraint, this allows to
construct a feasible candidate solution by discarding the first input in the previous input
sequence and appending the steady-state input at the end of the input sequence. Instead
of directly adding the artificial steady state ı̂x̃d to the optimization problem, it can be
convenient to derive a parameterization θ ∈ R

nθ of the system’s steady states and the
corresponding outputs by evaluating

ı̂x̃d(θ) = (Mθ,f)1:nx,: θ =: Mθ θ, (5.7)

ı̂ỹd(θ) := C ı̂x̃d(θ) (5.8)

with

Mθ,f = null








A − Inx

B 0

C 0 −Iny







 , (5.9)

which can be obtained directly from the definition of a steady state and input
pair [LimonEtAl08]. In Equation (5.9), null(·) gives a matrix that contains in its columns
a basis of the null space of its matrix argument. The steady-state input corresponding to
the steady state can be obtained by instead selecting the matrix block (Mθ,f)nx+1:nx+nu,:

in an expression otherwise similar to Equation (5.7). For the considered single-integrator
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dynamics and in the absence of state constraints, all states are steady states with a
steady-state input of zero. Hence, the steady states can be parameterized with the state
variable itself, leading to the choices nθ := 2Na, Mθ := I2Na

. With this, the formation
control goal can be encapsulated in the cost function

J(x(t),yd,u(· | t), ı̂x̃d) =
t+H−1∑

k=t

(

‖x(k | t) − ı̂x̃d‖2
Q + ‖u(k | t)‖2

R

)

+ ‖C ı̂x̃d − yd‖2
T , (5.10)

where the weighting matrices R and T are symmetric and positive definite and the
weighting matrix of the state is defined as Q := CTDC ≥ 0 with the diagonal weighting
matrix D > 0. Using this cost function, the formation control problem can be solved
through the DMPC optimization problem

minimize
ı̂u(· | t), θ

J(x(t),yd,u(· | t), ı̂x̃d) (5.11)

subject to x(k + 1 | t) = Ax(k | t) + Be ı̂u(k | t) + Bpup(k | t), (5.12)

‖ı̂u(k | t)‖∞ ≤ umax, (5.13)

‖∆ ı̂u(k | t)‖∞ ≤ ∆umax, k ∈ {t, . . . , t + H − 1}, (5.14)

‖ı̂u(t + H − 1 | t)‖∞ ≤ ∆umax, (5.15)

x(t + H | t) = ı̂x̃d, (5.16)

ı̂x̃d = Mθθ, (5.17)

x(t | t) = x(t). (5.18)

Different from the setup in [FerramoscaEtAl13], the optimization problem also contains
the constraints (5.14) limiting the control inputs’ change

∆ ı̂u(k | t) :=







ı̂u(k | t) − ı̂u(k − 1 | t) if k > t,

ı̂u(t | t) − ı̂u(t − 1 | t − 1) if k = t
(5.19)

from one time instance to the next. This makes necessary the additional constraint (5.15)
to ensure recursive feasibility. Without it, the candidate solution with the steady-state
input of zero at the end can be inadmissible since it may be unreachable within the
admissible change of input. Beyond the applications of this thesis, in the case of more
general dynamics and steady states with corresponding non-zero steady-state inputs, the
deviation of the terminal control input from the steady-state input would need to be
constrained instead. The proposed optimization problem refrains from using a terminal set
with an accompanying terminal cost since both would need to be recalculated for changing
numbers of robots, which can become computationally difficult. Therefore, the terminal
equality constraint (5.16) is used instead.

In the optimization problem, it would be desirable to optimize not only over robot ı̂’s own
control input ı̂u(· | t) but over the whole input vector u(· | t). However, this is impossible
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Algorithm 1 Distributed MPC scheme

1: input: initial feasible sequences iucand(· | 0) ∀ i ∈ Ra

2: at all time steps t ≥ 1:

all robots i ∈ Ra set ∀ j ∈ Ra \ {i}

jucand(t + k | t) =







jua(t + k | t − 1) for k ∈ {0, . . . , H − 2},

0 for k = H − 1

3: at all time steps t ≥ 0:

in parallel, all robots i ∈ Ra

solve the optimization problem (5.11)-(5.18) with

ju(k | t) := jucand(k | t), j ∈ Ra \ {i}
⇒ iu

⋆(· | t), θ⋆(t)
set and publish iua(· | t) := (1/Na) iu

⋆(· | t) + (1 − 1/Na) iucand(· | t)
4: in parallel, all systems i ∈ Ra apply iua(t | t)
5: set t := t + 1 and go to step 2

in the distributed setting since the other entries are determined by the other robots
concurrently. Therefore, the idea is to use previously communicated information to con-
struct a feasible candidate solution for the unknown entries, which correspond to the other
robots j ∈ Ra \{ı̂}. As usual, it needs to be taken care that this is done in a way that main-
tains the desired theoretical properties, including recursive feasibility [FerramoscaEtAl13].
This line of thought leads to the computation and communication scheme given in Al-
gorithm 1. The applied control input ı̂ua(t | t) results from a convex combination of the
optimal input sequence and the candidate solution, which yields ı̂ua(· | t). In consequence,
the candidate state trajectory resulting from the candidate input ı̂ucand(· | t) fulfills the
terminal equality constraint for a convex combination of the individual optimal artificial
steady states from the previous time step, ensuring recursive feasibility also of the terminal
constraint. Being an iterative distributed MPC scheme, the algorithm would allow to
optimize and communicate multiple times before progressing with step 4, to the end of
iteratively improving the calculated control input. However, as motivated previously, to
minimize the amount of communication per time step, this is not done in this thesis. After
all, beneficially, already one iteration per time step delivers a feasible result.

A crucial consideration for distributed robotics is that it is not enough to formulate the
DMPC optimization problem once, potentially in an offline, preprocessing step, and then
to start the system and solve the preformulated problem repeatedly until the system
operation stops. In contrast, it is constitutive to distributed robotics that the control
network can be reconfigured dynamically, with robots joining and leaving at any time.
A practical remedy can be to preformulate the problem for all numbers of robots that
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may occur, saving them in memory, and reloading the appropriate optimization problem
whenever necessary. Clearly, this does not yield the total flexibility sought for. For-
tunately, it is possible to explicitly calculate the multi-parametric quadratic program
representation of the optimization problem so that the matrices therein can be assembled
algorithmically and very swiftly, allowing to reformulate the problem during real-time
operation. Due to the additional parameters for the other robots’ candidate solution,
the additional optimization variable, and the constraints on the control input change,
the structure of the resulting multi-parametric quadratic program is a bit different and
more involved than for more classic MPC problems. Hence, a brief look at the problem
is worthwhile despite its technical character. To that end, it is practical to collect in

the vector Ue =
[

ı̂u
T(t | t) · · · ı̂u

T(t + H − 1 | t) θT

]
T ∈ R

2H+nθ all optimization vari-

ables. Similarly, the vector Up =
[

uT

p(t | t) · · · uT

p(t + H − 1 | t) uT

−1

]
T ∈ R

2(Na−1)H+2

contains all control inputs entering the problem as parameters. Therein, the short-hand
notation u−1 := ı̂u(t−1 | t−1) = ı̂u(t−1) is used to denote the robot’s previous control in-
put, which is necessary for the constraints on ∆ ı̂u(· | t). Overall, the optimization problem

depends on the parameters p :=
[

xT(t) yT

d UT

p

]
T

. Recursively inserting the dynamics
into the cost function and constraints while neglecting constant terms in the cost and refor-
mulating everything neatly in matrix-vector form, the optimization problem (5.11)-(5.18)
takes the equivalent form

minimize
Ue

1
2
UT

e HUe + pTFUe (5.20)

subject to Mt1 Ue = Mt2 p, (5.21)







−∆umax

...
−∆umax








≤ Md Ue ≤








∆umax

...
∆umax








, (5.22)

− ∆umax I2 + u−1 ≤ u(t | t) ≤ ∆umax I2 + u−1, (5.23)

− ∆umax I2 ≤ u(t + H − 1 | t) ≤ ∆umax I2 (5.24)







−umax

...
−umax








≤
[

I2H 0

]

Ue ≤








umax

...
umax








. (5.25)

Therein, all as yet undefined matrices are given explicitly in Appendix A.1, with the detailed
expressions not being of import for the understanding of the subsequent disquisitions. The
matrices are mostly constructed in a block-wise manner from the weighting and system
matrices appearing in the optimization problem and can hence be efficiently constructed
algorithmically, as desired. It is beneficial for some solvers to list separately the equality
constraints (5.21), the inequality constraints (5.22), and the simple bounds (5.23)-(5.25).
However, they can all be written as a set of inequality constraints to obtain the multi-
parametric quadratic program in the form introduced in Equations (3.13), (3.14). Hence,
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executing the DMPC formation controller comes down to supplying the optimization
problem (5.20)-(5.25) to a quadratic program solver of choice within the solution strategy
described by Algorithm 1. If the number of participating robots changes, the optimization
problem is swiftly reconstructed and the candidate solutions are reset. Therefore, the
robotic network can reconfigure itself fully automatically and in real time. When the output
matrix Cp is used in the cost function, the resulting applied control input ı̂u(t) := ı̂ua(t | t)
lets the robots maintain the relative positioning while moving the formation center to the
desired position. The choice of the diagonal weighting matrix D allows to weigh differently
the errors of the formation center and of the relative positioning of the robots. In contrast,
if Cv is used, the robots only maintain their relative positioning. A simple solution to
extend the latter to the velocity-control case is to apply the input

ı̂u(t) := ı̂ua(t | t) + cvd. (5.26)

However, this naive approach can result in control inputs that exceed the input constraints.
A more practical but also more involved way of circumventing this issue is discussed later
within Section 5.1.3 since it also affects the graph-algebraic approach to formation control.
Hence, the latter is discussed first.

5.1.2 Graph-Algebraic Formation Controller

While graph-algebraic control has already been introduced for the example of formation
control in Section 3.3, the usual linear approach to graph-algebraic formation control does
not consider input constraints at all. As will be shown below, using a nonlinear feedback
law, the nominal control inputs obtained with the graph-algebraic approach can be made
to fulfill the input constraints, too, which makes it more suitable for comparisons with the
DMPC approach.

In the graph-algebraic case, the position- and velocity-control cases both follow as exten-
sions of the simplest formation control case of robots merely attaining a desired relative
positioning anywhere in the plane. Therefore, the latter goal is considered first. The first
step in devising the graph-algebraic formation controller consists of determining the inci-
dence matrix of an orientation of the communication graph. The considered control setup
results in a complete communication graph, as exemplarily illustrated on the left-hand side
of Figure 5.2 for four robots, each represented by one node. Since the resulting controller
depends on the incidence matrix and since the controller, as for the DMPC case, needs
to be synthesized automatically in the case of changing numbers of participating robots,
an orientation of the communication graph and the accompanying incidence matrix need
to be generated automatically. In the oriented graph displayed on the right-hand side of
Figure 5.2, the chosen orientation and numbering of the edges facilitate the construction
of the incidence matrix. This kind of oriented graph and numbering of the edges can
be constructed by considering the nodes one after another, with an increasing number.
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Figure 5.2: Illustration of an undirected, complete graph and of a corresponding ori-
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In each step, a directed edge is drawn to point from the current node v̂ to every other
node vi 6= v̂ for which there does not yet exist an edge pointing from vi to v̂. For Na

cooperating robots, this leads to a specific directed graph
⇀

GNa
with nE = Na (Na − 1)/2

edges. Its incidence matrix is of the form

B⇀
GNa

=
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. (5.27)

Following what has been observed for the incidence matrix in Section 3.3, the matrix B̄ =
B⇀

GNa

⊗ I2 can be used to transcribe the robot positions x(t) to the stacked relative vectors

between the robot positions by means of d = B̄
Tx. However, in this thesis, the formation

shape is not defined by the relative vectors between the robots but by the robots’ desired
positions F̌

ixd, i ∈ Ra, relative to the geometric formation center. Hence, the control goal
of attaining the desired relative positioning can be given in the form

lim
t→∞

F̌x(t) != F̌xd (5.28)

with the stacked vector F̌xd =
[

F̌
i1
xT

d · · · F̌
iNa

xT

d

]
T

of the desired robot positions relative
to the formation center. With regard to the influence of different frames and points of
reference, it can be observed that

d = B̄
Tx ⇐⇒ Fd = B̄

T Fx (5.29)

⇐⇒ Fd = B̄
T F̌x. (5.30)
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Figure 5.3: Illustration of an exemplary formation involving four robots [EbelEberhard21]

The equivalence (5.29) holds since each pair of lines of B̄
T merely calculates differences

between robot positions. Therefore, transforming the robot position vectors’ coordinates
before or after the left-multiplication with B̄

T yields the same result. Similarly, equiva-
lence (5.30) follows since the relative vectors between the positions are invariant to changes
of the point of reference of the robot positions. Figure 5.3 illustrates the intuition behind
Equation (5.30). Due to the properties of B̄

T observed in Section 3.3, if the robots maintain
the desired inter-robot positioning defined by dd = B̄

Txd, i.e., if d(t) = dd, it need not
mean that x(t) = xd, but merely that x(t) = xd + 1Na

⊗ n for a translation n ∈ R
2.

However, since the robot positions relative to the formation center are invariant to such a
common translation of all robots, for the control goal (5.28), it holds that

lim
t→∞

F̌x(t) != F̌xd ⇐⇒ lim
t→∞

d(t) != dd (5.31)

for every connected communication graph.

With the above, interpreting formation control as a shifted agreement problem, a shifted
version of the classical agreement problem feedback (3.36) can be given by means of the
equivalent expressions

urf,u(t) = −B̄B̄
T(x(t) − xd) (5.32)

⇐⇒ urf,u(t) = −B̄B̄
T
(

ISF

(
F̌x(t) − F̌xd

))

. (5.33)

Singling out the feedback for robot ı̂ gives

ı̂urf,u(t) = −
((

B⇀
GNa

)

ı̂,:
⊗ I2

)

B̄
T
(

ISF

(
F̌x(t) − F̌xd

))

, (5.34)

where it is possible to directly insert the formation shape as defined by F̌xd. Inspired
by this linear feedback, but with the aim to satisfy the input constraints, the nonlinear
feedback

ı̂urf(t) = −
((

B⇀
GNa

)

ı̂,:
⊗ I2

)

umax

nE ,̂ı

tanh
(

(K ⊗ I2) B̄
T(x(t) − xd)

︸ ︷︷ ︸

=d(t)−dd

)

(5.35)
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is proposed. Therein, nE,i denotes the number of edges the node representing robot i ∈ Ra

is incident with. For the complete communication graph used for pure relative formation
control, it evaluates to nE,i = Na −1 =: n̄E for all i ∈ Ra. Furthermore, the tanh(·) function
is applied in an element-wise manner and the diagonal, positive definite matrix K ∈ R

nE ×nE

can be used to weigh differently the errors corresponding to the different edges of the
communication graph. Since it holds that

∑nE

j=1 |(B⇀
GNa

)ı̂,j| = nE ,̂ı, this control input satisfies
the input constraints by design, i.e., ‖ı̂urf‖∞ ≤ umax.

To show that the proposed feedback fulfills the control goal, it remains to be proven that,
for the closed loop ẋ = urf, it holds that limt→∞ d(t) != dd, which is equivalent to the
original control goal due to (5.31). The Lyapunov function candidate

V (d(x)) :=
nE∑

j=1

Vj(jd(x)) :=
nE∑

j=1

umax

Kjj nE,j

log(cosh(v1,j) cosh(v2,j)) , (5.36)

which employs the abbreviation vi,j = Kjj ((jd)i − (jdd)i), i ∈ {1, 2}, can be used to show
this. By construction, the continuously differentiable candidate satisfies V (d) = 0 ⇔ d =
dd, V (d) > 0 ∀d 6= dd, and V (d) → ∞ for ‖d − dd‖ → ∞. Its derivative is obtained in
the form

V̇ =
(

umax

n̄E
tanh((K ⊗ I2) (d − dd))

)
T

ḋ (5.37)

=
(

umax

n̄E
tanh

(

(K ⊗ I2) B̄
T (x(t) − xd)

))T

B̄Tẋ (5.38)

(5.35)
= −uT

rf ẋ (5.39)

= −uT

rf urf < 0 ∀
(

urf 6= 0
(5.35)⇐⇒ d 6= dd

)

. (5.40)

Employing LaSalle’s invariance principle [Khalil02] reveals that the closed loop approaches
the positively invariant set of states Srf =

{

x | V̇ (x) = 0 ⇐⇒ urf = 0 ⇐⇒ d(x) ≡ dd

}

,
which completes the proof. However, the feedback urf does not yet meet any of the two
control goals since the formation is attained anywhere in the plane and neither moving
with a desired velocity nor moving its center to a desired point. Nevertheless, the latter
can actually be dealt with using a feedback of the form of urf, e.g., by introducing a virtual
robot whose location is prescribed to be in the formation’s geometric center and otherwise
implementing urf as if the additional, virtual robot would be a real one. Thus, the virtual
robot also increments the value of nE ,̂ı to nE ,̂ı = Na in the feedback law. By modifying
those entries of the error gain matrix K that belong to graph edges to which the virtual
robot is incident, it is possible to weigh differently the error of the formation center and
of the robots’ positions relative to the formation center. Hence, at least on paper, the
position-control feedback seems somewhat similar to the corresponding DMPC controller.

In the velocity-control case, if the formation shall move with the desired velocity cvd while
the robots maintain their relative positioning, the feedback

ı̂uvf = ı̂urf + cvd (5.41)
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can be employed, yielding the closed loop ẋ = uvf. The latter’s behavior can be analyzed
with the same Lyapunov function candidate as above, yielding the derivative

V̇ = · · · = −uT

rf ẋ = −uT

rf (urf + 1Na
⊗ cvd) (5.42)

(5.35)
= −uT

rf urf −
(

umax

n̄E
tanh

(

(K ⊗ I2) B̄
T (x(t) − xd)

))T

B̄T (1Na
⊗ cvd)

︸ ︷︷ ︸

=0

(5.43)

= −uT

rf urf. (5.44)

Observing that the set

Svf =
{

x | V̇ (x) = 0 ⇐⇒ urf = 0 ⇐⇒ d = dd

}

(5.45)

is positively invariant with respect to the loop closed by uvf, LaSalle’s invariance prin-
ciple states that the closed-loop trajectories approach Svf as time approaches infinity.
Since iuvf

∣
∣
∣
urf=0

= cvd for all i ∈ Ra, in the limit as time approaches infinity, the closed
loop behaves according to the dynamics ẋ = 1Na

⊗ cvd, as desired. Nevertheless, as
it is the case for the velocity-control DMPC controller, without further measures, the
feedback uvf will in general not respect the input constraints anymore, leading to some
practical considerations for the velocity-control case and beyond.

5.1.3 Practical Considerations

The fact that the robots are modeled in the form of first-order systems complicates the
velocity-control case. For a second-order model, e.g., in the DMPC case, it would be directly
possible to include the deviation from a desired common velocity in the cost function.
Still, were it not for the input constraints, the first-order setup would allow to directly add
the formation’s desired common velocity cvd to the inputs commanded by the controllers
that maintain the pure relative positioning. Building upon this enticingly simple idea, it
is possible to arrive at a control setup that completely circumvents the constraint issue in
the case of the DMPC controller and extenuates it for the graph-algebraic controller.

To that end, for both control approaches, the feedback obtained at time step t ≥ 0 for
purely maintaining the robot’s relative positioning is subsequently denoted as ı̂urf(t). For
this, it is worth noting that the graph-algebraic controllers, different than the DMPC
controllers, have been formulated in continuous time. It is subsequently assumed that the
graph-algebraic control inputs are applied in a sample-and-hold fashion, which is also how
they are applied in the simulations and experiments later.

Instead of naively using the control input ı̂uvf(t) = ı̂urf(t) + cvd, it would be desirable to
apply the input ı̂uvf(t) = ı̂urf(t) + cṽd(t) with

cṽd(t) = arg min
v∈R2

‖v − cvd‖1 (5.46)

subject to ‖iurf(t) + v‖∞ < umax ∀ i ∈ Ra. (5.47)
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The resulting common velocity cṽd(t) would come as close as possible to the desired
value cvd while keeping all robots’ applied control inputs admissible. Potentially the full
set of inputs would be used to attain and maintain the formation, with a common motion
happening only when none of the formation controllers saturates the input constraints.
Hence, maintaining the formation would have priority over the common motion, which
fits the very notion of formation control. With the robots optimizing concurrently and,
importantly, exchanging data with one another only once every time step, for i 6= ı̂, the
inputs iurf(t) are not available at time step t since they have not yet been communicated.
A realizable approximation can be obtained by instead using the formation controllers’
inputs from the previous time step, i.e.,

cv̄d(t) = arg min
v∈R2

‖v − cvd‖1 (5.48)

subject to ‖iurf(t − 1) + v‖∞ ≤ umax ∀ i ∈ Ra (5.49)

with cv̄d(0) := 0. Since all robots rely on the same, previously communicated information
to solve this optimization problem, they will also automatically arrive at an identical value
for cv̄d(t). While the resulting input ı̂uvf(t) = ı̂urf(t) + cv̄d(t) does not necessarily satisfy
the input constraints, it is expected that the constraint violation

εvel := max {‖ı̂urf(t) + cv̄d‖∞ − umax, 0} (5.50)

is small. This is because the feedback laws are continuous in their parameters, i.e., in
the current robot positions and in the desired formation shape. In particular, both are
even Lipschitz continuous. While this is immediately apparent for the graph-algebraic
feedback law (5.35), in the case of the DMPC controller, it follows from the properties of
a multi-parametric quadratic program, where the feedback is always a piecewise affine,
continuous function of the parameters. Therefore, if the parameter’s change is small enough,
the resulting change in the control input is small. In usual operation, with a suitably
short sampling time, this is expected to hold since the robot positions will not change
drastically from one time instant to the next so that the constraint violation εvel may be
tolerable. Unfortunately, the desired formation shape, which is part of the parameters,
can change drastically if the robots shall attain a different formation shape at system
runtime. Since enabling adaptive formation shapes is a defining feature in a reconfigurable
robotic network, a solution to the issue seems very desirable, especially if it does not induce
superfluous conservativity into the closed loop. Beneficially, the possibility to constrain the
change of the control input enables a solution for the DMPC controller by replacing umax

with umax −∆umax both in the input constraints (5.13) of the DMPC optimization problem
and in the constraint (5.49) of the optimization problem for the determination of the
common formation velocity. This does introduce some conservativity since, e.g., for cvd = 0,
the maximum norm of the applied control input will not exceed umax−∆umax. Nevertheless,
for the probably more common case of ‖cvd‖∞ ≥ ∆umax, the maximum admissible control
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input may indeed be attained. Hence, this setup is used subsequently for the DMPC
controller in the velocity-control case, whereas the graph-algebraic controller directly relies
on the unmodified version of the optimization problem from Equations (5.48) and (5.49)
to obtain the current common formation velocity.

5.1.4 Comparative Analysis

Despite aiming at the same control goals, the DMPC and graph algebraic setups are
vastly different both with regard to their theoretical background and the complexity of
the numerical calculation of the resulting control input. While some of the theoretical
advantages of MPC and DMPC have already been discussed in an abstract manner
in Section 3.2, the solution effort and complexity of the DMPC controller warrant an
investigation whether these theoretical advantages are actually of practical benefit for
formation control. Therefore, subsequently, the performance of the two control approaches
is analyzed and compared in simulative and experimental scenarios. Indeed, great care
needs to be taken when comparing control schemes that are so vastly different. They are
tuned in different, incomparable ways, which can make it impossible to draw unbiased
conclusions. Hence, the brief simulative study focuses on simple scenarios designed to
single out individual properties of the controllers that are independent from the tuning
of their parameters. By excluding effects that are hard to predict and quantify, such
as unknown disturbances and time delays, these simulation scenarios therefore allow
a quantitative analysis of the fundamental properties inherent to the control schemes
themselves. Subsequent, more elaborate hardware experiments then show whether the
proposed controllers can actually deal with the effects neglected in simulation.

Simulative Analysis

The simulation uses the program architecture proposed in Section 4.2. However, pure
formation control does not contain any organizational tasks and hence, the robotic agent
consists only of the control agent, which is solely occupied with the dynamic control of the
robot. All software composing the robotic agent is written in C++, whereas simulation and
visualization happen in Matlab. Using the communication-based, distributed architecture
already in simulation, combining different programming languages and environments can
be done without further complications. The robots are simulated with the model derived in
Section 4.3.2, using the same geometric and material parameters and the same settings of
the motor controllers as they have been used in Section 4.3.3. However, in this section, the
motor moments are not saturated in any way in order to exclude one more effect that may
cloud the judgment of the formation controllers themselves. In contrast, the commanded
directional velocity is saturated at umax = 0.2 m/s. To easily distinguish between the
controllers for the position- and velocity-control cases, the DMPC controller for position



84 Chapter 5: Distributed Control and Organization for Cooperative Robotic Behavior

KI
x

y

1257

68

12 11

3

10

4

9

ℓx ℓx ℓx

ℓy

ℓy

Figure 5.4: Formation with twelve robots as considered in the simulation scenarios

control is denoted as the DMPCp controller, whereas the one for the velocity-control case
is abbreviated as the DMPCv controller. Similarly, the notations AGTCp and AGTCv

are used to refer to the corresponding algebraic graph theory-based counterparts. Both
variants of the DMPC controller employ the prediction horizon H = 30 and the weighting
matrices R = 0.6 I and T = 1 · 104 DI with the diagonal weighting matrix D being set to

D
p =




0.5 I2 0

0 I



 (5.51)

for the DMPCp controller and to D
v = I for the DMPCv controller. The change of the

control input is left unconstrained for the DMPCp controller, making it more similar in its
properties to the AGTCp controller, but constrained by ∆umax := 0.02 m/s in the velocity-
control case. This allows to reap the benefits of the proposed setup for the determination
of the common formation velocity. All controllers, including the graph-algebraic ones,
are applied with the sampling time Ts = 0.05 s. If not stated otherwise, the AGTCp

and AGTCv controllers employ the error gain K = 3 I.

The first simulation puts to the test the DMPCp and AGTCp controllers, with the intent
to study the influence of the number of robots on the conservativity of the control schemes.
The scenario is simulated for increasing numbers of robots Na ∈ {2, 4, 6, 8, 12}. The
formation shape for twelve robots is depicted in Figure 5.4, with each circle denoting a
robot and the encircled numbers corresponding to the robots’ identification numbers. The
inter-robot distances are set to ℓx = 1.0 m and ℓy = 0.75 m. For formations involving
fewer robots, the first Na robot positions are picked from the formation shape depicted
in the figure. The robots are assumed to be in stationary, perfect formation initially
and, beginning at t = 3 s, shall move the formation’s geometric center from its initial

position cx(0) = 0m to cxd =
[

3 0
]
T

m. Hence, due to the absence of exogenous
disturbances, the robots’ behavior is predominantly determined by the positional error
of the geometric formation center since the error in the robots’ relative positions stays
imperceptible. One might assume that the controllers command the formation to drive
with the maximum admissible velocity toward the setpoint, at least if the controllers are
not tuned in a too conservative manner. However, as the results from Figure 5.5 show, at
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Figure 5.5: Comparison of selected control inputs resulting from the applications of the
DMPCp and AGTCp schemes, with the DMPCp results being shown in the upper plot

least for the AGTCp controller, the situation is vastly different. Even for only two robots,
the controller only commands a maximum directional velocity of umax/2, with it decreasing
further for every robot added to the formation. While the figure only shows the relevant
control input of robot 1, due to the setup of the task, the plots look indistinguishably
similar for the other robots.

Taking this result as a motivation to reconsider the setup of the AGTCp controller, it turns
out that this is a fundamental limitation that is independent of the tuning of the controller.
The communication graph used for the controller is complete, with an additional virtual
robot representing the formation center. Hence, each node representing a robot is adjacent
to every other robot and to the virtual robot, meaning that each robot node is incident
with Na edges, i.e., nE,i = Na for all i ∈ Ra. However, in this specific, synthetic simulation
setup, for each robot, there is only a control error along one of these edges, namely the
one corresponding to the formation center. Inspecting the feedback law (5.35) from this
point of view reveals that, under these circumstances, the control input is upper-bounded
by umax/Na in its absolute value, which fits precisely to the maximum values attained in
Figure 5.5. This may be extenuated by building the formation controller upon a more
sparse but still connected communication graph since this kind of conservativity decreases
as the graph’s sparsity increases. However, this would run contrary to the goal of being able
to directly assign different weights to the absolute positioning of the formation center and
the relative control error, which would mean trading one disadvantage with another. Of
course, this synthetic, rather untypical setup with errors only occurring along one edge per
robot constitutes the worst case with regard to the scheme’s conservativity. Nevertheless,
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as the results for the DMPCp controller show, it does not pose as much of a challenge to
the optimization-based nature of DMPC with its explicit consideration of the constraints.
Still, the conservativity also increases with increasing numbers of robots, which can be
explained by the control task getting more difficult with larger numbers of robots, with
the predicted errors summing up over more robots. Furthermore, in a bit more of a subtle
manner, also the convex combination in step 3 of the DMPC scheme from Algorithm 1
introduces some degree of conservativity by giving greater weight to the candidate solution
for larger numbers of robots. In any case, the performance of the DMPCp scheme seems
vastly superior in this simple, yet surprisingly challenging, test. To give some perspective,
when measuring the time spans it takes for the formation to reach the goal up to 5 cm
into the vicinity of the goal position, starting to measure from the setpoint change, it
approximately takes between T2 = 15.55 s for two robots and T12 = 55.15 s for twelve
robots with the DMPCp controller, but between T2 = 33.9 s and T12 = 203.95 s with
the AGTCp controller.

In the second scenario, the velocity-control setups are put to the test. Four robots once
more start in perfect formation, with the same four-robot formation being used as in the

previous scenario. They shall move with a desired common velocity cvd :=
[

0.18 0
]
T

m/s.
However, starting at t = 7 s, the desired formation shape increases linearly in size, starting
at the initial values ℓx = 1.0 m, ℓy = 0.75 m for the inter-robot distances and reaching the
values ℓx = 3.0 m, ℓy = 3.25 m at t = 9.5 s. From that time onward, the desired formation
shape’s size is kept constant until it is switched back to the original size at t = 27 s, this
time in a discontinuous manner. It suffices to look at the result data for a subset of the
robots due to symmetry. As the results depicted in Figure 5.6 show, the input sequence
commanded by the DMPCv scheme respects the input constraint at all times, with specific
inputs still coming very close to the input bounds. The AGTCv scheme’s results, however,
confirm the theoretical suspicions as it mostly respects the input constraints but can, for
short amounts of time, exceed them drastically. In one time instance in this scenario, the
maximum admissible input is exceeded by more than 50 %.

Judging by the results of both schemes, however, the determination of the formation’s
common velocity through Equations (5.48) and (5.49) serves its purpose well. In those
time instances in which the formation controllers are very active due to the formation
shape changing its size, the common velocity is reduced as desired, giving more priority
and input authority to correcting the relative positioning. This allows the formation
controllers to reduce the relative control errors of the robots swiftly. Figure 5.7, which
representatively depicts the relative control error 1 εrel :=

∥
∥
∥1x − cx − ISF

F̌
1xd

∥
∥
∥

2
of robot 1,

confirms this.
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Figure 5.6: Comparison of the unsaturated control inputs and formation center velocity
resulting from the DMPCv and AGTCv schemes in the second simulation scenario, which
considers an evolving formation shape, with the DMPCv results being shown in the upper
plot

0 8 16 24 32 40
0

0.5

1

1.5

time t [s]

1

εre
l

[m
] DMPCv

AGTCv

Figure 5.7: Relative control errors of robot 1 resulting from the application of the DMPCv

and AGTCv schemes in the second simulation scenario, which considers an evolving
formation shape



88 Chapter 5: Distributed Control and Organization for Cooperative Robotic Behavior

Experimental Analysis

In the experiments, the robotic agents use the same software architecture and, if not
stated otherwise, identical control parameters as in the previous simulations. The robots’
poses are tracked in real time by an external tracking system consisting of six Prime 13W
OptiTrack cameras. A custom piece of software, running on a laboratory computer solely
used for tracking purposes, takes the data from the tracking system and repackages it in a
format identical to what is published by the simulation agent in simulations. The cameras
are operated at a frequency of 100 Hz, which is also used as the publishing frequency of
the pose information. The experiments employ the omnidirectional robot introduced in
Section 4.3. The robots are connected to a common wireless network on which also the
tracking information is available. Since, in its current configuration, the robots’ onboard
processing capabilities are somewhat limited, the control agents do not run on the robots
themselves but on a portable laboratory computer. The latter has an Intel Core i7-9750H
CPU operating at 2.6 GHz with six physical and twelve logical cores. The control agents
publish the control inputs, which are given in the inertial frame of reference, on the
network. Each robot receives its control inputs over the wireless network and rotates it
into its body-fixed frame. For the latter, the onboard software of the hardware robots
is subscribed to the data coming from the tracking system. The received control input
is applied via the kinematics relations (4.5)-(4.8) and four independent PID controllers
governing the motors’ angular velocities. Since all data between the various participating
programs is exchanged via communication, network time delays are present, and messages
are, at times, lost or not received on time. Similarly, it does happen that the robots’ wheels,
with their small rollers, slip on the floor of the experimentation area. Therefore, the major
disturbances and intricacies that are hardest to reflect in simulations are well-represented
in the hardware setup. The experiment results are recorded with an overhead video camera.
Furthermore, to provide additional information, a Matlab-based protocol agent is running
in the network. It subscribes to and records all relevant information, including the control
inputs commanded and the robot poses tracked. Naturally, it is not a perfect observer
since some information may fall victim to lossy communication. Nevertheless, it is still a
convenient way to gather the relevant information in one place, which would otherwise be
distributed over the whole network.

The first experiment scenario puts to the test the DMPCp and AGTCp controllers by
letting them track a very challenging trajectory with the geometric center of a four-
robot formation. The formation’s shape shall be a square with an edge length of 0.5 m,
corresponding to the positioning of the first four robots in Figure 5.4 for ℓx = ℓy = 0.5 m.
The trajectory is designed to saturate the input constraints so that the robots need to
compromise between spending control effort for maintaining the formation shape and for
tracking. It is given by

cxd(t) =
[

1.5 m sin(ωtt) 0.5 m sin(2ωtt)
]
T

, (5.52)
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t = 10.00 s t = 20.00 s t = 30.00 s

t = 40.00 s t = 60.00 s t = 80.00 s

Figure 5.8: Impressions from the first experiment scenario, exemplarily run by the DMPCp

controller

which yields an ∞-shaped trajectory for a given angular velocity ωt > 0. To increase
the intricacy of the task, the formation is rotated continuously by letting the reference
frame KF rotate with the angular velocity

ωKIKF
=
[

0 0 ωf

]
T

. (5.53)

For the moment, the angular velocities are set to ωt = 0.1 rad/s and ωf = 0.2 rad/s.
Consequently, both the desired relative positioning and the desired position of the formation
center are modified continuously. Hence, different from the synthetic simulation scenario
previously looked at in Figure 5.5, control errors occur along all edges of the graph-algebraic
controller’s communication graph. Initially, the robots are placed coarsely in formation
around the origin. The experiment is run over a time span of 80 s. Exemplary impressions
from the experiment can be found in Figure 5.8, which shows photographs of the experiment
using the DMPCp controller. The robots’ top layers are covered in blue for improved
visibility in photographs and video recordings. In this and all similar subsequent figures,
the trajectories are mapped onto the images in an approximate manner, with the current
formation shape being depicted in orange. The image corresponding to the time t = 40 s
shows that the robots do not, at all times, perfectly maintain their formation shape while
following the trajectory. One may conjecture that this has to do with the input constraints.
And, indeed, as the results from Figure 5.9 show, some robots’ DMPC-based controllers
make use of their full control authority to have a chance of following the trajectory. In
consequence, the robots succeed in following the trajectory without falling behind too
considerably, as the resulting trajectory of the formation’s geometric center shows, cf.
Figure 5.10. However, the results from the figure also suggest that the graph-algebraic
controller fails to follow the trajectory, even with error gains increased beyond their
standard setting of K = 3 I. As the commanded control inputs depicted in Figure 5.11
show, even for K = 12 I, the control inputs do not come close to satisfying the input
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Figure 5.9: Control inputs commanded by the DMPCp scheme in the first experiment
scenario, which consists of following a fast ∞-shaped trajectory with a rotating formation

−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.25
0

0.25
0.5

x [m]

y
[m

]

DMPCp

AGTCp, K = 3 I
AGTCp, K = 6 I
AGTCp, K = 12 I
cxd

Figure 5.10: Comparison of the formation center’s trajectories in the first experiment
scenario, which consists of following a fast ∞-shaped trajectory with a rotating formation

bounds. This highlights that the controller’s inherent conservativity, previously observed in
theory and simulations, can also pose a problem in realistic settings where errors are present
along all edges of the communication graph. The fact that the DMPC-based controller
succeeds in compromising between maintaining the formation shape and following the
trajectory, with the input constraints prohibiting a perfect performance, also becomes
visible in the robots’ relative formation errors. Inspecting the relative errors resulting
from the DMPCp scheme through the upper part of Figure 5.12 reveals that time spans of
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Figure 5.11: Control inputs commanded by the AGTCp scheme for K = 12 I in the first
experiment scenario, which consists of following a fast ∞-shaped trajectory with a rotating
formation
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Figure 5.12: Relative control errors of the robots following a fast ∞-shaped trajectory
with a rotating formation, with the AGTCp controller using an error gain of K = 12 I
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Figure 5.13: Comparison of the formation center’s trajectories in a modified, slower version
of the first experiment scenario

larger relative errors correspond to time spans where certain control inputs saturate the
input constraints, cf. Figure 5.9. As Figure 5.12 shows, while failing to follow the desired
formation center trajectory, the graph-algebraic controller fares better in keeping the
relative errors low since more control authority is available for that task. Furthermore, the
fact that, in this scenario, the AGTCp controller does not seem to be as overwhelmingly
conservative as in the previous synthetic simulation scenario seems heartening regarding
the practical usefulness of the controller. And, indeed, in a slower version of the considered
scenario, it does succeed with tracking the desired formation center trajectory. Setting
the angular velocity parameters to ωt = 0.025 rad/s and ωf = 0.1 rad/s, and running the
experiment over a time span of 300 s yields a tracking performance that is well-nigh perfect
for both controllers, see Figure 5.13. Thus, in situations where its conservativity is not an
issue, the AGTCp scheme can also be a valid choice that respects input constraints.

To conclude the treatise of formation control, it remains to be seen how the general setups
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t = 3.00 s t = 9.00 s t = 24.00 s

t = 3.00 s t = 9.00 s t = 24.00 s

Figure 5.14: Impressions from the second experiment scenario with the results from
the DMPCv and AGTCv controllers shown in the top and bottom rows, respectively

deal with changing numbers of active robots. Furthermore, the velocity-control schemes
have not yet been inspected in experiments. In consequence, the final formation control
experiment shall elucidate both aspects. To that end, once again, four robots cooperate in
maintaining a square-shaped formation with an edge length of 0.5 m and are placed coarsely

in formation initially. They shall move with a common velocity of cvd =
[

0.18 0
]
T

m/s.
However, for 5 s ≤ t < 10 s, robot 3 is not part of the formation and instead uses an
auxiliary controller to steer clear of the formation. The remaining robots form a triangular
formation, with the leading two robots keeping their centers’ distance of 0.5 m. The
formation’s third robot shall move to the center of the former square formation shape’s
trailing edge. Impressions from the experiment are shown in Figure 5.14. The commanded
control inputs depicted in Figure 5.15 confirm the observations made in the previous
simulative studies, with the DMPCv controller respecting the input bounds under all
circumstances, whereas the AGTCv scheme can violate them for short time intervals. In
any case, Figure 5.16 reveals that both control schemes can swiftly reduce the relative
formation errors when the formation shape changes.

All things considered, the experiments have shown that all proposed control schemes
can deliver a usable performance in practical hardware experiments when used within
the confines of their abilities. None of them has shown any particular susceptibility to
the disturbances appearing in hardware experiments when compared with one another.
However, the DMPC-based approaches have confirmed their advantages rooted in their
theoretical setup, with constraints being respected and used to their fullest extents whenever
necessary. The latter allows the DMPC-based position controller to track significantly faster
trajectories for given input bounds. Moreover, apprehensions concerning the increased
computational requirements of the DMPC-based schemes cannot be confirmed. Both the
solution as well as the reformulation of the underlying optimization problems prove to be
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Figure 5.15: Control inputs commanded by the DMPCv and AGTCv schemes in the final
experiment scenario
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possible within the real-time requirements posed by an experiment. Furthermore, a more
nuanced advantage does not manifest itself in the results but only in the experience of
working with both approaches – and that is DMPC’s ease and intuitiveness when it comes
to tuning. For all these reasons, in the transportation scheme proposed in this thesis,
DMPC-based formation control is employed. In addition, whenever precise positioning
is required, e.g., when space for maneuvering is limited, the position-control setup is
easier to parameterize than the velocity-control case. For maneuvering an object into a
specific pose, the latter would require an outer control loop governing the formation’s
desired velocity, introducing additional control parameters that would require further
tuning. Thus, henceforward, for transportation purposes, mostly the DMPCp controller is
used. This also suits the hardware experiments conducted in the thesis since the available
experimentation area is of limited size, requiring precise maneuvering so that none of the
robots goes astray and leaves the area covered by the tracking system.

5.2 Organization for Cooperative Transportation

Following the model task of cooperative transportation, it is still unclear how to come up
with formations useful to transport an object, which constitutes the primary organizational
task in this thesis. In more abstract manners, with DMPC-based formation control, a
compelling and well-tunable method has been introduced that allows to coordinate the
states of cooperating systems relative to one another and with regard to a global reference.
The notion of organization now mostly reduces to the question of which relationship
between the states is desirable and useful for solving a practical task.

Mathematically handling organization requires an additional formalization of the trans-
portation task. In particular, this yields further requirements for the robotic system, in
addition to those necessary for formation control, which have been stated and motivated
at the outset of Section 5.1. Similar to formation control, the task is treated as a planar
task. Regarding the object’s shape, it is assumed that the robots know the shape in
advance and that it is polygonal but potentially non-convex. Furthermore, each robot
shall know its position relative to the object as well as the location of the object’s center
of mass, and the object’s pose relative to a desired path or setpoint. Deformations of
the object are not treated in this thesis, and, therefore, the object is assumed to be rigid.
Moreover, the object shall not be subject to any kinematic constraints, i.e., it may be
pushed in any direction. Fitting to the robot design introduced in Section 4.3, the robots
shall have a circular footprint of radius rR. Finally, each robot shall be equipped with
distance sensors useful to navigate around the non-convex object safely. In an extension
not treated subsequently, these sensors may be used to infer the object shape in a discovery
phase executed before the transportation process begins. As will be seen, these additional
requirements suffice to synthesize and attain formations serviceable to transportation.
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Figure 5.17: Illustration of a polygonal, non-convex object with the dilated object’s
edges ŠE shaded in blue

5.2.1 Formation Synthesis

As motivated previously, the formation synthesis problem will be solved through formulating
and solving it as an optimization problem. Before discussing how the resulting problem
can be solved in a distributed fashion, it is essential to analyze the resulting problem’s
properties. Thus, at first, the formation synthesis problem is formulated.

Formulating the Optimization Problem

Given the object’s shape, to make the formation synthesis problem amenable to algorithmic
treatment, a couple of preprocessing steps are helpful. Whereas the transportation task
is two-dimensional, the formation synthesis task can be regarded as a one-dimensional
problem of finding Na robot positions along the edge of the object to be transported.
Nevertheless, as will be seen, the intricacy of the problem is not to be underestimated.

During transportation, when the robots are in contact with the object, their centers have a
distance of their radius to the edge of the object. Hence, in the first step, a dilated version
of the object is calculated, with the edges being moved outward by the robot radius rR.
During transportation, the robots can aim to position their centers of mass along the
dilated object’s edges. Crucially, the robots shall manipulate the object through the
forces they can exert in the direction of the inner normals of the object’s edges. Potential
friction forces in the tangential direction are not used since that is expected to be less
robust. However, at pointed corners of the object, the normal direction is not uniquely
defined – pushing the object at pointed corners may yield a hardly predictable behavior.
Hence, at pointed corners, the edges of the dilated object are clipped by a certain safety
distance, as illustrated in Figure 5.17. In contrast, if neighboring edges meet at a reflex
inner angle, a robot may have one contact point with each of the edges simultaneously.
The edges of the dilated object are described by the function ŠE : Ie → R

2, giving all
points along the edges in the coordinates of and relative to the frame of reference KS,
which is a body-fixed frame with its origin located in the object’s center of mass CS. It
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Figure 5.18: Two different formations of robots around an object, including the convex
cones C1 and C2 generated by the corresponding set of inner contact normals

is parameterized on the closed interval Ie ⊂ R. Subsequently, it is assumed that the
object’s current relative translational error is given by Š εt ∈ R

2, whereas the current
rotational error is given by εr ∈ R. The formation synthesis task can now be defined
as finding Na positions w1, . . . , wNa

along the edge ŠE. For algorithmic treatment, these

positions are subsumed in the vector w :=
[

w1 · · · wNa

]
T

in the following. Given a certain
positioning defined by w, the Na robots may have nc(w) ≥ Na contact points with
the object. Evidently, for manipulating the pose of the object, two quantities are of
central importance. Apart from the above-mentioned inner normals, for rotation, the
contact points’ lever arms with respect to the object’s center of mass CS are of interest.
Henceforward, the lever arms corresponding to a configuration w are collected in the
vector ν ∈ R

nc(w), whereas the columns of SZ ∈ R
2×nc(w) shall correspond to the object’s

inner normal vectors at the contact points given in the coordinates of the frame KS. The
levers’ signs are defined to be positive if the moment of a robot’s pushing force at the
corresponding contact point is a positive moment about the object’s center of mass in the
z-direction. In the opposite case, they are defined to be negative.

The first observation is that the translational error Š εt must be representable as a conic
combination of the inner normal vectors so that the object can even be pushed into the
direction of Š εt. This means that there must exist a vector α ∈ R

nc(w) of coefficients such
that

SZ(w)α = Š εt, αi ≥ 0, i ∈ {1, . . . , nc(w)}. (5.54)

Such a vector of coefficients need not be unique. If it is postulated that the resultant
force accelerating the object shall be proportional to the translational error Š εt instead of
merely pointing in its direction, the entries of α are proportional to the required pushing
forces into the directions of the corresponding normal vectors in SZ(w).

The geometry of this line of thought is illustrated in Figure 5.18, which shows two different
formations around the object, one with two robots and one with three robots, which
are depicted as light-blue circles. As can be seen, the green normal vectors generate the
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Š εt

0

PR
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cones C1 and C2, which contain all vectors that can be represented as a conic combination
of the normals. Therefore, the cones stretch to infinity at their curved boundaries. The
translational error vector Š εt, which can be thought of as the relative vector pointing from
the current to the desired position of the object’s center of mass, is contained in both
cones. Translation-wise, both formations are suitable to push the object in the demanded
direction. When formulating an optimization problem describing the formation synthesis
task, it hence seems prudent to require through the constraints that the translational error
is contained in the cone generated by the normals since otherwise, the transportation
will fail. However, even when fulfilling this constraint, formations may be of different
quality. In Figure 5.18, the two-robot formation on the left-hand side is decidedly less
robust to changes of the translational error. For instance, if the error vector is rotated a
bit about the z-axis, it is no longer contained, which may happen quickly if a trajectory is
tracked. Thus, during a transportation process, the lack of robustness of the configuration
on the left-hand side may necessitate more frequent reorganizations around the object,
which is undesirable because the transportation process will take longer and might be less
accurate because the object can slide freely in more directions. Still, depending on the
object, it may not be possible to improve upon this kind of robustness without additional
robots. Consequently, when formulating an optimization problem describing the formation
synthesis task, increasing the robustness with respect to changes of the translational error
is an aim that should be incorporated into the cost function. However, this makes necessary
a suitable measure to assign a numeric value to the robustness with regard to changes of
the translational error.

To this end, this thesis proposes a convex hull-based approach that can be evaluated
efficiently. Following Figure 5.19 from left to right, in the first step, each normal’s directions
are cut off at a specific distance δd ≫

∥
∥
∥

Š εt
∥
∥
∥

2
, yielding the points vi, i ∈ {1, . . . , nc(w)}.

In the second step, the convex polytope PR = convhull
(

{0,v1, . . . ,vnc(w)}
)

is calculated
as the convex hull of the points vi and the zero 0. Finally, under the assumption that the
point corresponding to the error Š εt is contained in the polytope, the proposed robustness
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value J f
t is calculated as the minimum distance of the point to the boundary of the polytope.

The latter can be calculated efficiently from the convex polytope’s half-space representation.
With increasing value of J f

t, the formation is more robust to changes of the translational
error. Ideally, the underlying convex cone is equal to R

2, meaning that the value of J f
t

is mostly determined by and increasing with the parameter δd. Implementation-wise,
this thesis employs the quickhull algorithm [BarberDobkinHuhdanpaa96] in its publicly
available implementation to calculate convex hulls.

The previous disquisitions merely deal with the translational error. It must be ensured
that the formation can rotate the object into the rotation direction currently necessary
while simultaneously reducing the translational error. Thus, additionally to what has been
demanded in Equation (5.54), one may require for the vector of coefficients α that

nc(w)
∑

j=1

αj (ν(w))j = εr. (5.55)

If, as above, the entries of α are interpreted as being proportional to the required pushing
forces, this means that the corresponding resultant moment about the object’s center of
mass is proportional to the rotational error εr. It is useful, although not immediately
necessary, that a formation can rotate the object also into the opposite direction. This
helps to prevent frequent reorganizations if the rotational error is small and may switch
signs swiftly. The two cost terms

J f
r,1 = −

nc(w)
∑

j=1

|(ν(w))j|, J f
r,2 =

∣
∣
∣
∣
∣
∣

nc(w)
∑

j=1

(ν(w))j

∣
∣
∣
∣
∣
∣

(5.56)

jointly help achieve that goal, with the term J f
r,1 associating formations with lever arms of

large absolute values with lower cost, whereas J f
r,2 ensures that they have different signs.

Having now dealt with the translational and rotational error, a final geometric requirement
needs to be added to the constraints. To prevent collisions, all positions along the edge of
the object should have a free Euclidean distance dmin that exceeds the robots’ diameter, i.e.,
dmin > 2 rR. Finally, casting all the requirements and considerations into an optimization
problem yields

minimize
w∈RNa

− cf
1 J f

t(w) + cf
2 J f

r,1(w) + cf
3 J f

r,2(w) (5.57)

subject to ∃α ∈ R
nc(w) satisfying Equations (5.54) and (5.55), (5.58)

frD
(

ŠE(wi),
ŠE(wj)

)

≥ dmin ∀ i 6= j. (5.59)

Therein, cf
1, cf

2, and cf
3 are non-negative weights, and the free Euclidean distance

frD
(

ŠE(wi), ŠE(wj)
)

between its two arguments evaluates to infinity if there is no free

line of sight between ŠE(wi) and ŠE(wj). The evaluation of constraint (5.59) becomes
more expensive for increasing numbers of robots. However, it may be approximated by not
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checking the free distance between all potential robot positions, but, e.g., only between
those that are neighbors along the edge of the object in a one-dimensional sense. Further-
more, it is worth noting that the direct usage of Equation (5.54), with the coefficients of the
conic combination being unbounded, can lead to degenerate cases that are not very useful
in practice. For instance, in a two-robot formation, the corresponding normalized normal
vectors n1 and n2 may almost exactly oppose one another, i.e., n2 ≈ −n1 but n2 6= −n1.
Indeed, in reality, they might even exactly oppose one another but may just not do so
in the optimization problem due to numerics or due to an imprecise description of the
object shape. The corresponding cone would then consist of almost an entire half-space
of R

2. However, some permitted motions, e.g., orthogonal to n1 into the half-space’s
interior, would then be almost impossible to execute practically. Mathematically, this
corresponds to very large coefficients αi being necessary in the conic combination. Hence,
such degenerate cases can be prevented by additionally enforcing a maximum value for

each coefficient’s absolute value in the conic combination, i.e., ‖α‖∞
!

≤ αmax. This can
also help choose the parameter δd in the convex hull’s construction by merely choosing it
considerably greater than αmax.

For the moment, it is assumed that a feasible solution w⋆ of the optimization problem
has been found and that the entry ŵı̂ of w⋆ is the formation position picked by robot ı̂.
Then, the desired position of robot ı̂ relative to the object’s center of mass can be obtained
through ŠE(ŵı̂). However, to use this robot position in conjunction with the formation
control setup from the previous section, the robot position must be given relative to
the formation’s geometric center. The corresponding nominal position of the formation
center in the coordinates of and relative to the object’s reference frame KS is given
by Š

cx
⋆ = 1

Na

∑Na

i=1
ŠE(w⋆

i ). Hence, robot ı̂’s desired relative position in the format required

by the formation controllers can be obtained by F̌
ı̂xd = FSS

(
ŠE(ŵı̂) − Š

cx
⋆
)

. Similarly, the
offset between the formation center and the object’s center of mass needs to be accounted
for when following a trajectory with the object’s center of mass since trajectory tracking
is executed by controlling the formation center.

On another note, harking back to the beginning of the chapter, in the context of Figure 5.1,
the question has been raised how to decide when the robots need to reorganize. An answer
can be distilled from the formation synthesis problem since its constraints contain the strict
requirements for a successful transportation. Therefore, the formation is reorganized if it
does not satisfy the constraints anymore for the current translational and rotational errors.
The reorganization happens by reinitializing the optimization problem and supplying
it with the current errors. Then, the optimization problem is solved iteratively with a
constant set of parameters, including the errors. However, this raises the question of how
to solve the optimization problem, which involves two considerations.

Firstly, the optimization problem is a very intricate one. The problem is non-convex with
potentially multiple local and global optima. The cost is, in general, even a discontinuous
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function of the optimization variable. Altering the one-dimensional position wi of one of the
robots can not only change the direction of its contact normal in a discontinuous manner,
but it may even happen that, e.g., the robot suddenly has two contact points instead of
one. Furthermore, compared to optimization problems usually solved for optimal control,
the problem is computationally intensive. For instance, evaluating the constraint (5.58)
can be done by essentially checking the feasibility of a linear program that may require a
similar effort as solving a linear program and may be implemented that way. In contrast,
in the optimal control problems that have appeared in this thesis, an evaluation of the
constraints merely necessitates a matrix-vector multiplication and a vectorized comparison.
Beneficially, formation synthesis is not as time-critical of a task as dynamic control. A
feasible, non-optimal formation is already serviceable for transportation, and the robots
can wait until such a feasible formation has been found. This first consideration motivates
the usage of augmented Lagrangian particle swarm optimization (ALPSO) as introduced
in Section 3.1 due to it being a global optimization approach with practically non-existent
requirements on the structure of the problem.

Secondly, precisely because of its complexity, the formation synthesis problem can benefit
from a distributed solution. On the one hand, it can be acceptable for this slower-paced
task to be executed on one leading robot, communicating the resulting formations to the
other robots. On the other hand, if the computational capabilities of all robots can be
leveraged to accelerate the solution process, the whole transportation process will benefit.
This second consideration motivates to build upon [SedlaczekEberhard06] to realize a
distributed, communication-enabled version of the ALPSO optimizer. In a sense, this
can be thought of as a parallelization of the ALPSO algorithm for a distributed memory
architecture. Therefore, it will be referred to as the distributed augmented Lagrangian
PSO (DALPSO) algorithm subsequently.

Distributed Augmented Lagrangian PSO

Fortunately, the particle swarm algorithm itself is very accessible to parallelization. Recall-
ing what has been said in Section 3.1, the basic algorithm consists of evaluating the cost
function at a variety of particle positions and updating the particle positions according
to a simple update rule, cf. Equations (3.15) and (3.16). In principle, the cost function
evaluations can be done fully in parallel, and the only global information used by the
iteration law is the position of the best current particle. Therefore, for computationally
intensive optimization problems, for which an evaluation of the cost function takes much
time compared to the exchange of data via communication, parallelization can have a
significant benefit. The different program instances merely need to communicate their
best current particle and the corresponding cost between iterations. Then, each program
instance can determine the best particle position across all particle swarms via comparisons.
The corresponding particle is referred to as the globally best particle subsequently. With
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this setup, when communication is lossless, the distributed particle swarm algorithm
yields the same results as the centralized one. It is also possible to communicate more
rarely, which yields a different behavior than the centralized algorithm, with the individual
program instances and corresponding particle populations behaving in a more decoupled
manner in time spans without communication, leading to a more diverse search for optima.

However, augmented Lagrangian PSO complicates the process a bit since also Lagrange
multiplier estimates and penalty factors are in play. To get an impression of the interde-
pendencies and the communication requirements that follow from them, it is worthwhile
to briefly inspect the modified optimization problem to be solved as well as the update
laws of the multipliers and penalty factors. A more detailed derivation of the expres-
sions is not necessary for that purpose and may instead be found in the literature, e.g.,
in [NocedalWright06] and [SedlaczekEberhard06], with the general augmented Lagrangian
approach appearing in the former, and its application to PSO with all technical details in
the latter.

Subsequently, the algorithm is formulated for a general nonlinear optimization problem as
introduced in Section 3.1, with the optimization variable z ∈ R

n, the cost function c(z),
the inequality constraint functions hm(z), m ∈ {1, . . . , ni}, and the equality constraint
functions gj(z), j ∈ {1, . . . , ne}. Inspired by the Lagrangian function from Equation (3.4),
the augmented Lagrangian function can be defined in the form

LA(z,λ,µ, ri, re) = c(z) +
ni∑

m=1

λm max

({

hm(z), − λm

2 ri
m

})

+
ne∑

j=1

µj gj(z)

+
ni∑

m=1

ri
m max

({

hm(z), − λm

2 ri
m

})2

+
ne∑

j=1

re
j g2

j (z) (5.60)

with the penalty factors ri
m and re

j corresponding to the inequalities and equalities and
being subsumed in the vectors ri and re, respectively. Instead of solving the original
optimization problem, the idea is to repeatedly solve an unconstrained problem with the
cost function LA(z,λ,µ, ri, re) instead of the original cost c(z), updating the penalty
factors and estimates for the Lagrange multipliers in-between.

This iterative approach works as follows. At iteration k ∈ N0, the notation z[k] shall refer
to the current candidate solution. The initial guess is denoted as z[−1]. Similarly, λ[k],
µ[k], ri,[k], and rj,[k] shall denote the current iterates for the multiplier estimates and the
penalties. At k = 0, the multiplier estimates may be initialized with zeros, whereas the
penalties are set to a positive constant. Then, in each iteration step, the unconstrained
optimization problem with the cost function LA(z,λ[k],µ[k], ri,[k], re,[k]) is solved with an
arbitrary, suitable optimization algorithm – in this thesis with particle swarm optimization,
cf. Section 3.1. The result, i.e., the globally best particle, which need not necessarily be
a fully converged solution, is used as the iterate z[k]. Between iterations, the Lagrange
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multiplier estimates are updated by means of

λ[k+1]
m =







0 if λ[k]
m + 2 ri,[k]

m hm(z[k]) ≤ 0,

λ[k]
m + 2 ri,[k]

m hm(z[k]) if λ[k]
m + 2 ri,[k]

m hm(z[k]) > 0,
(5.61)

µ
[k+1]
j = µ

[k]
j + 2 r

e,[k]
j gj(z

[k]), (5.62)

with them by tendency increasing with constraint violations of z[k] [SedlaczekEberhard06].
Similarly, the penalty factors are updated in the form

ri,[k+1]
m =







2 ri,[k]
m if hm(z[k]) > hm(z[k−1]) and hm(z[k]) > εi,

1
2

ri,[k]
m if hm(z[k]) ≤ εi,

ri,[k]
m else,

(5.63)

r
e,[k+1]
j =







2 r
e,[k]
j if |gj(z[k])| > |gj(z[k−1])| and |gj(z[k])| > εe,

1
2

r
e,[k]
j if |gj(z[k])| ≤ εe,

r
e,[k]
j else

(5.64)

with the constraint tolerances εi, εe > 0. Between iterations, the positions of the particles
in the PSO algorithm are not reset. However, every time the multiplier estimates and
penalties have changed, the recorded values of the augmented Lagrangian at their positions
need to be recalculated. The recalculation can be done without additional evaluations
of the cost and constraint functions. This requires to individually record the evaluated
ingredients of the augmented Lagrangian, i.e., the constraint and cost functions’ values at
the particles’ positions. Therefore, in a distributed calculation, these values have to be
communicated along with each program instance’s best particle if a reevaluation of the cost
and constraints shall be prevented. In particular, the best particle’s constraint function
values are also needed for the updates of the multiplier estimates and penalties. Indeed,
the update only needs those. Hence, also for the augmented Lagrangian PSO, it is possible
to communicate after each iteration of the PSO solver, so that each program instance
has the same best particle, leading to the same updates of the multiplier estimates and
penalty factors. The latter is important to facilitate the comparison between the individual
program instance’s different solutions. With different multiplier estimates and penalties,
the same particle would lead to different values of the augmented Lagrangian, prohibiting
a well-defined determination of the globally best particle. However, in a crowded robotic
network, it may be undesirable to communicate data after every internal PSO iteration and,
thereby, to risk network congestion for an otherwise not very time-critical organizational
task. Luckily, the comparability of the different ALPSO solutions is fully maintained if
data is exchanged only before each update of the penalty factors and multipliers. This
leads to a calculation and communication structure as depicted in Figure 5.20, where,
for each constant set of multiplier estimates and penalty factors, the PSO algorithm is
executed for nPSO iteration steps. Outside of the PSO algorithm, the multiplier estimates
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initialization, k := 0

nPSO PSO iterations with
cost LA(z,λ[k],µ[k], ri,[k], re,[k])

communication, determine best
value z[k] across all swarms

updates (5.61)-(5.64)
→ λ[k+1], µ[k+1], ri,[k+1], re,[k+1]

finished?k := k + 1 stop
no

yes

Figure 5.20: Flowchart of the distributed ALPSO algorithm

and penalties are updated. Since the PSO algorithm as well as the update of the multiplier
estimates and penalties work in an iterative fashion, the overall algorithm has a doubly
iterative structure, with the PSO algorithm performing inner, nested iterations. The
optimization stops if a termination criterion is met, e.g., a convergence criterion or a
maximum number of outer iterations nAL. In the latter case, in total, the PSO problem is
solved nPSO · nAL times. Although numerically unlikely, there may be multiple solutions
with identical Lagrangian values across the particle swarms. In the case of equally good but
different solutions, without loss of generality, the one coming from the program instance
with the lowest identification number is chosen.

Having been formulated for a generic nonlinear optimization problem, this algorithm
is readily applicable to the formation synthesis problem formulated above, with the
constraint (5.58) being implemented as an equality constraint, evaluating to zero if it
is satisfied and to one if it is not. Henceforward, in the organization agent responsible
for formation synthesis, the algorithm is executed for a fixed number of inner and outer
iterations nPSO and nAL, respectively. If this yields a feasible formation, it is published
on a channel listened to by the robotic agents, which use the formation as their new aim
formation. In this case, the ALPSO algorithm is executed again, without reinitializing
the particles, multiplier estimates, and penalty factors, potentially leading to a better
feasible point, which is again published on the network. This is repeated until the current
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formation is infeasible according to the current translational and rotational errors. In
this case, all particles across the swarms are reinitialized at random positions, and the
algorithm is fed with new parameters, i.e., the current translational and rotational errors of
the object. However, to hot-start the search process, the algorithm starts with the previous
multiplier estimates and penalty factors. Similarly, if the previous best particle is better
than all newly generated ones, it is added as the swarms’ best particle. Subsequently, the
organization agent dealing with formation synthesis is referred to as the formation agent.

If a robot joins or leaves the task solution, it does not contribute to the formation synthesis
anymore. Implementation-wise, this is challenging to realize. The control agents publish
on the network whether they are active or not, and, in turn, each control agent informs its
formation agent about the activity status of the robots in the network. However, since
messages may arrive at different time instances and may not be delivered successfully, there
may be conflicting information on the network regarding which robot is currently active.
If not implemented with care, this could lead to formation agents waiting indefinitely for
messages that will never arrive because the corresponding formation agent is inactive.
Furthermore, since the formation synthesis problem’s size depends on the number of active
robots, the formation agents may receive pieces of data of inconsistent sizes. The latter
is actually used to resynchronize the formation agents’ information and status after the
size of the robotic network has changed. Every time a formation agent receives data of
inconsistent size, it leaves its current iteration immediately, resets the algorithm, performs
all inner iterations contained in the first outer iteration, and waits for incoming messages.
This is done until messages with entirely consistent data have been received by all robots
considered to be active. The robotic agents only consider feasible formations published by
the formation agents when they fit in size to the number of robots they consider to be
active. This strategy allows to deal with a changing robotic network in a reliable fashion.

On another note, some aspects of the optimization problem have a combinatorial character,
e.g., which set of edges and hence contact normals are a useful combination to reduce
the current errors. Thus, at a fixed number of iterations, it is to be expected that the
algorithm’s results become more reliable if more particles are used at the same time. Hence,
assuming that each formation agent is run with a fixed number of particles, which it can
evaluate efficiently and within an acceptable time span, the solution process should benefit
from additional formation agents since they introduce additional particles into the network.
Thus, to see whether additional formation agents can actually be beneficial in practice, a
brief look at the DALPSO algorithm’s performance in a representative formation synthesis
scenario is warranted.

To that end, the formation synthesis for two robots around the object shape depicted
in Figure 5.21 is examined. Evidently, a transportation task is usually more difficult for
fewer robots since, at one point in time, they have fewer contact points and corresponding
contact normals and levers at their disposal to manipulate the object. The object shall be
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Figure 5.21: A λ-shaped object with two potential formations depicted in light blue and in
dark blue with the desired translational movement depicted by means of an orange arrow

translated without rotating it, moving its center of mass from the base to the tip of the light-

orange vector depicted in the image. The translational error is Š εt =
[

0.5 0.15
]
T

m. Each
formation agent uses 15 particles, and a fixed number of nAL = 40 outer and nPSO = 3 inner
iterations, respectively. Apart from the number of agents cooperating, all miscellaneous
parameters are left constant. The weighting factors in the cost function are set to cf

1 = 40,
cf

2 = 10, and cf
3 = 1, whereas the parameter in the calculation of the robustness measure

in the cost function is set to δd = 20. The formation’s positions are required to have a
free distance greater than twice the robots’ diameter. Due to the optimization algorithm’s
stochastic properties, the experiment is run a thousand times each for one to six formation
agents. For a two-robot formation, in a real-world scenario, usually a maximum of two
formation agents, one for each robotic agent, would cooperate in the formation synthesis.
Still, increasing the number further allows to obtain a better impression of the behavior
of the algorithm. Furthermore, it demonstrates that the proposed software setup would
allow additional robots to help with computation despite not partaking in the physical
task. In the subsequent analysis, the problem is considered to be solved if the DALPSO
algorithm has arrived at a feasible point, which need not be optimal. For all numbers of
cooperating agents, in a share of the realizations, the problem has been solved in the first
execution of the DALPSO algorithm, i.e., within nAL outer iterations. However, when only
one formation agent solves the problem, in 661 out of the 1000 realizations, the DALPSO
algorithm had to be re-executed in a hot-started way, potentially multiple times. The
number of trials, i.e., executions of the DALPSO algorithm, which it took the different
numbers of agents to arrive at a feasible point is visualized in the plot on the left-hand side
of Figure 5.22. The light-blue boxes span from the lower to the upper quartiles, whereas
the dark-blue horizontal lines within the boxes mark the median values. Similarly, the
dark-blue diamonds point out the averages, and the whiskers denote the minimum and
maximum values. As the results show, by tendency, adding additional formation agents
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Figure 5.22: Box plots illustrating the solution performance of one to six formation agents
solving an exemplary formation synthesis problem over 1000 realizations for each number
of agents

more reliably yields a feasible solution within fewer trials. The median of the number of
necessary trials is already at one when two agents cooperate. Similarly, the average number
of necessary trials is monotonically decreasing for increasing numbers of cooperating agents.
The solution times, illustrated in the same way on the right-hand side of Figure 5.22,
paint a very similar picture. However, it does not make sense to add arbitrarily many
formation agents due to the communication overhead. The optimal number of formation
agents depends on the balance of the computational capabilities and the communication
network’s properties. The experiments have been run on a desktop computer with an Intel
Core i7-8700 CPU operating at 3.2 GHz with six physical and twelve logical cores. Hence,
communication between the formation agents happened on the same machine, yielding a
comparatively low communication overhead. Thus, when running on networked robots,
the network overhead will most certainly increase. However, part of its relative impact
may be offset if the algorithm is run on robots with worse computational capabilities.
The best cost achieved throughout the experiment was approximately −53.93, whereas
the worst was about −15.47. The illustration from Figure 5.21 shows the formations
associated with the lowest and highest costs in the form of light-blue and dark-blue circles,
respectively. Although they are both feasible to translate the object into the required
direction, it is clear that the light-blue formation would have an easier time to additionally
rotate the object around its center of mass if it was required. Up to numerical accuracy,
both formations have three contact points. Despite these encouraging results, the real test
of the proposed algorithm and setup will be practical transportation scenarios involving a,
potentially adaptive, robotic network. But before that will be looked at in the next chapter,
some other matters have to be discussed. In particular, it is not yet clear which robot
picks which position in the formation distributedly synthesized by the formation agents.
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5.2.2 Negotiation

In an abstract sense, inter-robot negotiation is necessary to determine which robot solves
which subtask in the network. Since all robots have equal capabilities, it would be possible
to assign any robot to any task, merely avoiding conflicts, with every task being dealt
with by exactly one robot. In this interpretation, it would be acceptable to let the robots
agree upon any bijective mapping between the robots’ identification numbers and the
subtasks to deal with. However, for the present transportation task, where the subtasks
are essentially defined by different positions around the object, this simple approach would
be inefficient and complicate the robots’ individual navigation around the object. On
the one hand, robots may be assigned to formation positions far away from their current
position, making the organization and reorganization process take more time. On the
other hand, probably more critically, this may lead to a chaotic organization process,
with the robots moving in different directions around the object, which would require a
sophisticated navigation scheme avoiding collisions as well as deadlock situations in which
two robots stop moving because they keep giving each other right of way.

Consequently, this thesis’ negotiation scheme, which has already proven its usefulness
in [EbelEberhard18] and [EbelEtAl21], takes into account the geometric nature of the
task. As for the formation synthesis, the position negotiation is simplified by working
with the Na one-dimensional positions along the dilated object’s edges as contained in
the vector w⋆, which is a feasible point of the formation synthesis problem (5.57)-(5.59).
Subsequently, fitting to the notation used for formation control, robot ı̂’s relative position
in the object-fixed reference frame is denoted as Š

ı̂x. In the first step, each robot projects its
current position onto a point along the dilated object’s edges to which it has the minimal
Euclidean distance among all points of the edges. The set of such points is given by

P
(

ŠE, Š
ı̂x
)

:=
{

w ∈ Ie

∣
∣
∣
∣ ∀y ∈ ŠE(Ie) :

∥
∥
∥

ŠE(w) − Š
ı̂x
∥
∥
∥

2
≤
∥
∥
∥y − Š

ı̂x
∥
∥
∥

2

}

. (5.65)

If this set contains more than one point, an arbitrary one is picked in a consistent manner,
e.g., the one corresponding to the smallest one-dimensional position along the edges. In the
following, the chosen one-dimensional position is denoted as pc

ı̂ ∈ P
(

ŠE, Š
ı̂x
)

. To facilitate
the negotiation process, the robots communicate additional data. In each time step, robot ı̂

publishes its current closest one-dimensional position pc
ı̂ as well as, if already available,

the latest goal position w̄ı̂ picked in a previous time step. It receives the quantities pc
j and

w̄j from the other robots j 6= ı̂. The negotiation works most swiftly if the robots send and
receive this data in every time step. It makes sense to send and receive it together in one
message with the data communicated for the DMPC controller since that is published in
every time step, too. Hence, the position negotiation is run in the control agent, bridging
the gap between the data received from the organization agent and the dynamic controllers.

Proceeding with the negotiation process, given its own projected position as well as those
received from the other robots, robot ı̂ sorts them in ascending order, i.e., it determines
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a mapping π : {1, . . . , Na} → Ra such that pc
π(j) ≤ pc

π(k) for all j < k, j, k ∈ {1, . . . , Na}.
If multiple robots have the same projected position, they are ordered according to their
identification numbers as the second priority. The neighbors Nı̂ of robot ı̂ are now defined
to be the robots corresponding to the two neighbors of the robot’s projected position pc

ı̂

in the sequence
(

pc
π(Na), pc

π(1), pc
π(2), . . . , pc

π(Na)

)

. The setup of the sequence ensures that
each robot has two neighbors. In particular, robots π(1) and π(Na) are neighbors of one
another, fitting the toroidal character of the parameterized object edge. In the following,
the two neighbors of robot ı̂ shall be given by Nı̂ =: {n1, n2}. To avoid technicalities, it
is subsequently assumed that robot ı̂’s position appears somewhere in the middle of the
sequence, with its neighbors’ projected positions satisfying pc

n1
≤ pc

ı̂ ≤ pc
n2

. With this, the
idea is to define a safe zone I f

ı̂ ⊂ Ie in which robot ı̂ can operate freely, picking a goal
position that is available therein. A prudent choice is the set

I f
ı̂ :=

{

w ∈ Ie | max
(

{w̄n1
, pc

n1
}
)

< w < min
(

{w̄n2
, pc

n2
}
)}

, (5.66)

which is the open interval between either the projected positions or the previously picked
goal positions of the neighbors, picking whichever is independently more restrictive. The
robot now picks its new goal position ŵı̂ from the solution w⋆ of the formation synthesis
problem by evaluating

ŵı̂ := max
w⋆

i
∈If

ı̂

({

w⋆
1, w⋆

2, . . . , w⋆
Na

})

. (5.67)

If the optimization problem (5.67) is infeasible, the arithmetic mean of the interval
boundaries of I f

ı̂ is chosen. If I f
ı̂ is empty, robot ı̂ may simply stay stationary until it is

not. The maximization in (5.67) lets the robots explore the whole boundary of the object.
For instance, if all robots’ initial projected positions are smaller than all entries of w⋆,
they will move into position in-order, without overtaking one another along the edges and
instead waiting until a desirable position w⋆

i appears in the window of operation defined
by I f

ı̂ . This also defines a natural movement direction around the object, corresponding to
increasing parameters of ŠE(·) and minimizing the risk of collisions. Nevertheless, if all
robots solve the problem (5.67) simultaneously, conflicts may arise with robots picking the
same position if a new formation has just been synthesized. Fortunately, this can be solved
by only letting non-neighboring robots pick their goal positions in parallel. Depending on
whether the number of robots cooperating is even or uneven, due to the parameterized
edges’ toroidal structure, it takes either two or three time-steps until every robot has picked
a goal position in a conflict-free manner. Robot ı̂’s two-dimensional goal position Š

ı̂gf ∈ R
2

can finally be calculated by simply evaluating the parameterization of the dilated object’s
edges, i.e., Š

ı̂gf := ŠE(ŵı̂).

In practice, for increased safety, the interval I f
ı̂ may be clipped by a safety distance at

both ends, e.g., by a value greater than the robot radius but smaller than the minimum
distance dmin appearing in the formation synthesis problem (5.57)-(5.59). Furthermore,
with the objects transported potentially being non-convex, it need not be trivial to
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navigate from the robot’s current position to its goal position Š
ı̂gf since the line of sight

may be blocked by the object. In particular, for this reason, it is not generally possible to
immediately use the formation controller. Instead, the robots use an individual navigation
scheme to move into formation, informing the other robots when they are in formation
so that dynamic formation control can be switched on. However, a general navigation
scheme, planning shortest paths around the object, may not let the robot navigate into
the natural movement direction along the object’s edges as implied by the negotiation
scheme. A practical way to enforce the general movement direction is to not supply the
navigation scheme with the goal position corresponding to ŵı̂ but to a one-dimensional
position into the direction of ŵı̂, using a small look-ahead distance. As the applications in
Chapter 6 show, the scheme, implemented this way, works in a very robust fashion, letting
the robots pick positions and therefore organize in a self-coordinated, conflict-free manner.
Henceforth, it may also serve as a blueprint to solve other negotiation and task-allocation
schemes that operate on a one-dimensional ordered set with a similar toroidal character.
Extensions to higher dimensions may be similarly interesting.

5.3 Mapping and Path Planning

In this section, the navigation of an individual robot around the object is treated first,
with navigation and path planning for the transported object through an obstacle-ridden
environment following subsequently. Navigation and path planning are very well-researched
fields and not the main focus of the thesis. However, the design of appropriate methods is
still necessary to obtain a functioning all-around scheme, especially since the cooperative
transportation setting does bring about a few characteristic features and requirements.
Using similar foundational techniques, a look at individual navigation, despite being
common to robotics, serves as a good preparation for the more intricate global navigation.

5.3.1 Individual Navigation

As delineated in Section 4.2, the evasion of obstacles is time-critical and, therefore, best run
in the control agent alongside real-time control. Hence, the individual navigation, including
mapping and path planning, need to be executed reliably within the control sampling time.
Consequently, at best, the calculation effort is upper-bounded by a constant. Therefore,
a discretization-based approach, operating on an equidistant grid, is employed. While it
will always be an approximation due to its finite resolution, the latter also means that the
calculation effort is strictly upper-bounded if the resolution is fixed. A comparatively high
accuracy is desirable around the object since most activity will happen in the vicinity of
the object’s edges. However, when joining the transportation task, the robots may start
far away from the object, meaning that a large area would have to be discretized, which
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runs contrary to achieving a high accuracy around the object at a fixed resolution. This
conflict can be resolved as follows.

Each robot uses information from its distance sensors as well as the object’s known shape
to build its personal grid-based map at a predefined resolution. The map moves and
rotates with the object, i.e., with its body-fixed frame of reference KS. The map’s scale
varies with the distance of the robot to the object’s center of mass so that differently large
areas can be covered using the same resolution. Hence, the number of grid cells per area,
and thereby the map’s accuracy, increases as the robot comes closer to the object. The
map’s minimum size contains merely the object plus just enough of its surroundings to
allow for safe maneuvering of the robot around the object.

Apart from this scaling trick, the approach builds upon the very classic idea of constructing
a connectivity graph from a dilated version of the map, containing all obstacles in an
enlarged form so that the circular robot can access the remaining unoccupied grid cells
without collisions. The map employed is a binary map and can be equivalently thought of
as a pixelated image with the pixels taking two different values, depending on whether the
corresponding grid cell is considered to be occupied or not. Thus, in the first step, the object
is drawn into the image. Then, the point-cloud data representing points of objects sensed by
the robot’s distance sensors are added. It is enough to only consider measured points closer
to the robot than its goal position. Similarly, for this thesis’ local navigation purposes, it
suffices to only consider the current distance measurements without memorizing sensed
obstacles. However, the map-based approach would allow for an extension in that regard.
The dilated map is constructed by enlarging all obstacles and the transported object by
the robot radius plus potentially an additional safety distance. Implementation-wise, being
a typical operation in computer vision with optimized libraries being available, the dilation
process and similar operations can be done efficiently for pixelated maps. The applications
in this thesis use the OpenCV library [KaehlerBradski16] to manipulate and visualize all
kinds of pixelated maps that are used for navigation purposes.

The connectivity graph is constructed so that every center of an unoccupied pixel in the
dilated map corresponds to a node in the graph. Each node is adjacent to at most eight
other nodes, which correspond to neighboring pixels that are unoccupied. Hence, it is
assumed that the robot can move from one pixel to the other horizontally, vertically, and
diagonally. The A⋆ algorithm as introduced in Section 2.2.1 is used to find the shortest
path from the start to the goal. In general, for a dilation radius greater than the robot
radius, the optimal position within the formation will be inside the area covered by the
dilated object and hence not accessible. In this case, the actual goal position is projected
onto the nearest free grid cell. The path is then planned to the latter and completed
by adding a straight-line segment to the actual goal position. Instead of the cell center
corresponding to the goal position, the robot plans the path precisely to the goal’s position
within the cell. Similarly, if the robot’s current position is inside a blocked region of the



5.3 Mapping and Path Planning 111

dilated map, it is also projected to the closest free position as a starting point for the graph
search algorithm. The resulting path is tracked by picking a point ahead by a certain
distance and using it as a setpoint for a linear MPC controller for tracking. The latter
can be thought of as a simpler, non-distributed version of the cooperative distributed
controller introduced in Section 5.1.1. A schematic example showing the principle of
the map building and path planning process at a deliberately low resolution is given in
Figure 5.23, for which the steps can easily be retraced by hand. Actual, representative
outputs of the resulting implementation for two robots moving into formation are given in
Figure 5.24. These can be viewed in real time during the simulation or experiment. In the
pixelated maps, the robots are depicted in light blue, the dilated object in light gray, the
original object in dark gray, and the current planned path is drawn in dark blue. Therein,
the distance-based scaling of the map becomes apparent.

Indeed, if the object’s desired path is known a priori, the methods described so far already
constitute a functioning and versatile transportation scheme. A known path is followed by
tracking a path point that is a certain distance ahead of the object pose’s projection onto
the path. As a matter of fact, most of the applications later in the thesis will focus on the
setting with an a priori known path, simply because it allows to inspect the properties and
interaction of the organization and control schemes without any further schemes clouding
the judgement by introducing additional complexities. It is organization and control that
are particularly interesting and different in distributed robotics, with organization even
becoming relevant only because of the cooperative aspect. Still, to conclude the mostly
methodological part of the thesis, a tailor-made global navigation scheme is introduced. It
enables a self-reliant transportation through obstacle-ridden environments.

5.3.2 Global Navigation

Global navigation is dealt with by a separate organization agent, which subscribes to
distance sensor data published on the network. Apart from the measured distance values
and the corresponding measurement directions, the distance sensor data also contains the
position from which the measurement was taken. It is assumed that the global navigation
agent knows the object’s pose, which is realized by subscribing to the channel on which
the object’s pose is published. Furthermore, the goal of the transportation, which is
the aim pose the object shall have at the end, is also known to the global navigation
agent. The global mapping agent runs continuously and concurrently to the control agents,
planning paths from the latest received pose of the object to the goal pose. Indeed, due to
it not being a time-critical task, global navigation is run within only one of the robotic
agents. Its algorithmic design and implementation do not treat data coming from its
corresponding robotic agent any different than data received from the other agents. Hence,
it may be run on any of the robotic agents or potentially even on a supporting robot or
drone accompanying and supporting the transportation process without getting involved
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Figure 5.23: Illustrative pixelated maps depicting, from left to right, the U-shaped
transported object with a single-pixel obstacle, the dilated version of the map, and a
light-blue robot with a dark-blue planned path to its goal position

Figure 5.24: Program output showing the pixelated maps for the simulated local navigation
of two robots, with those of robot 1 depicted in the upper row from left to right, whereas
those of robot 2 are shown in the lower row
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physically. If, for instance, the robot running the global navigation agent breaks down, it
would be conceivable that the remaining robots use their still-running control agents to
safely pause transportation until global navigation can be resumed on another robot. The
control agents subscribe to the path resulting from global mapping and path planning,
which is published by the global navigation agent. It is then tracked by the formation in
the same way as a known path. The proposed scheme can deal both with predefined maps
and maps constructed online from sensor data. Mixtures of both are also possible, with
parts of the workspace being known a priori, whereas some unknown obstacles are added
online through sensor data.

In any case, global navigation is decidedly more intricate than the local problem discussed
previously. In unknown workspace environments, sensor information must be incorporated
during operation to map and memorize the workspace and potential non-convex obstacles
contained therein. Furthermore, the transported object’s shape is not as simple as
the robots’ circular shape. It may be non-convex, and it is, in general, not rotation-
symmetric. However, rotating it may be necessary to find a path that reaches the goal
point. Consequently, checking for collisions between possible configurations of the object
and obstacles cannot be circumvented by merely constructing a dilated map. Also, the
simple fact that rotation does matter means that the description of the object’s pose
needs three generalized coordinates. Hence, the path planning problem becomes three
dimensional, with the third dimension corresponding to the object’s orientation. Finally, it
is not sufficient if the planned path is free of collisions between the transported object and
the obstacles. The robots need some additional space to maneuver between the object and
the obstacles. Therefore, to allow the robots to maneuver, the path planning algorithm
needs to reserve an area around the object.

Fortunately, all these challenges can be dealt with by a scheme expanding upon the
techniques that have been useful already in Section 5.3.1. Once again, a pixelated, two-
dimensional map of the workspace is constructed with a fixed resolution and, this time,
also with a fixed scale. All a priori known obstacles are added to it at the start. Whenever
new sensor information is received, it is also added to the map. This is done by using the
full information brought about by the measurement. Not only are cells marked as occupied
if a point is measured in their area, but they are also marked as being unoccupied if the
measurements allow concluding so. If the sensors pick up points in the area around the
object reserved for robot movement, they are not added to the map since they most likely
belong to one of the robots instead of to an obstacle. Moreover, measurements within
the area of the transported object are also not added since the map shall only contain
obstacles. If the a priori known obstacles are known in a precise fashion, points measured
in the vicinity of known obstacles may be disregarded, too. Similarly, the robot position
from which the measurement was taken can be marked as free on the map since the robot
cannot have been inside an obstacle.
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In a copy of the map, all objects are dilated by a dilation radius greater than the robot’s
radius. For increased safety, uncertainties, e.g., in the form of measurement inaccuracies,
may be taken into account by a larger dilation radius. So far, the strategy seems similar to
the one described for individual navigation. However, the connectivity graph’s construction
is more intricate since the graph does not follow immediately from the two-dimensional
map. Different from before, the path is planned on a three-dimensional grid. Two of its
dimensions still correspond to the directions of the plane the robots and objects move in
and, thus, to the two-dimensional map of the workspace. Hence, each layer of the grid has
the same resolution as the workspace map. The third dimension corresponds to different
orientations of the object, with the grid cells’ centers discretizing the angle with respect
to a reference orientation in an equidistant manner between −180◦ and 180◦. The grid’s
outer edges in rotation direction correspond to angles of −180◦ and 180◦ and hence encode
the same orientation of the object, giving rise to a toroidal character of the grid.

The idea is to construct the connectivity graph from this grid. It shall contain a node for
each cell center that corresponds to a collision-free object pose. Each node is adjacent to
at most 26 other nodes, which correspond to collision-free, neighboring grid cells, including
neighbors in the diagonal directions of the grid. Due to the grid’s toroidal character in the
rotation direction, the nodes in the upper-most grid layer, corresponding to angles close
to 180◦, are suitably connected to the nodes in the lowest grid layer, which correspond to
angles close to −180◦. Once more, the A⋆ algorithm is used to find a shortest path through
the graph, leading from the current object pose to the goal pose. The connectivity graph’s
construction is only done implicitly while the A⋆ algorithm searches for the shortest path.
Whenever the algorithm requires the information whether the object pose symbolized by a
grid cell is free of collisions, i.e., whether there actually is a corresponding node in the
connectivity graph, an explicit collision test is performed. This can be done in an efficient
manner. To this end, in a preprocessing step, pixelated snapshots of the object in all the
different orientations encoded by the grid centers are recorded. These snapshots are of
the same spatial pixel density as the one used for the workspace map. The snapshots
are then dilated with a dilation radius that consists of the robot radius plus a safety
distance and a further, additional distance that accounts for the space the robots need to
maneuver around the object while reorganizing. Whenever it becomes necessary to check
for collisions, the dilated object snapshots are superimposed onto the dilated map of the
workspace. Then, checking for collisions comes down to a simple binary per-pixel operation
that, once more, can be evaluated efficiently. This idea is sketched in Figure 5.25.

In the spatial directions, the edge weights of the connectivity graph are chosen as the
Euclidean distances between the grid centers. Naturally, there is no universal notion
of distance when comparing rotations and translations. Hence, the relation of the edge
weights between a translation by a unit of length and a rotation by a unit of rotation is a
tuning parameter. The same consideration applies to the design of the resulting path’s
parameterization.
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Figure 5.25: Principle of checking for collisions for global path planning, with pixels in
collision shaded in red

It is worth noting that, even though only one agent deals with global navigation, the
concurrent software architecture still brings about challenges. For instance, it needs to
be ascertained that the workspace map is not modified while the A⋆ algorithm uses it in
collision queries since this may lead to undefined behavior. Hence, the A⋆ algorithm uses a
static copy of the map, with the original map not being modified until the data has been
copied. The proposed scheme’s full functionality and performance will become apparent
in intricate simulation scenarios examined in the following chapter. In the meantime, to
point out an example, the object transportation path depicted in Example 2 early on in
the thesis has been planned with the method described here. Therein, the obstacles have
been known a priori.
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Chapter 6

Results from Cooperative

Transportation

When looked at superficially, the challenge in cooperative robotics is the physical coop-
eration of the robots. However, beyond the physical level, tackling a practical task in
the field also usually requires the finely coordinated cooperation of different methods and
software components. Consequently, while some of the involved methods have already
been put to work in several examples and simulative as well as experimental analyses,
the interplay of all components and methods needs investigation. Hence, in this chapter,
all that has been proposed, deliberated, and analyzed in the preceding chapters is put
into service for cooperative transportation, revealing whether the proposed approach can
deliver on its promises. At first, a simulative investigation is performed to examine the
fundamental qualities of the scheme. These include whether the scheme can accommodate
objects of intricate non-convex shapes and whether it can deal with different numbers of
robots cooperating as well as with robots joining and leaving the transportation process.
The scenarios assume that the object shall follow a known path. Subsequently, exemplary
experiment scenarios are used to study whether the involvement of robotic hardware raises
unprecedented problems not reflected in the simulations. Scenarios with different object
shapes also highlight the versatility of the scheme. Finally, since the area available for
experimentation is of limited size, navigation and transportation through obstacle-ridden
environments are examined at the example of large-scale simulation scenarios.

6.1 Simulative Investigation

All simulations in this chapter use the software structure devised in Section 4.2 and
summarized in Figure 4.2, with each robotic agent consisting of a control agent and a
formation agent. As previously in the formation control simulations, the simulation agent,
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which is a Matlab program, employs the robot model from Section 4.3.2. The contact forces
between the robots and the transported object are calculated using a penalty-force approach.
The object is modeled by means of the dynamics Moq̈o + Doq̇o = fo, with the object’s
pose being described by qo ∈ R

3, and Mo and Do being the diagonal mass and damping
matrices, respectively. The vector fo ∈ R

3 contains the contact forces and the resulting
moment acting on the object. The sensor simulation agent simulates the robots’ distance
sensors, with them having a limited accuracy and range. As far as not stated otherwise,
the sensors are simulated with a range of 1.25 m, with the robot obtaining 64 distance
measurements equally distributed around the robot’s perimeter and the measurements
having a radial accuracy of 0.05 m. For an efficient evaluation, in a preprocessing step,
the constrained Delaunay triangulation of the object is calculated and saved, making it
straightforward to check algorithmically whether a measurement point is contained in
the object. The maximum directional robot velocity commanded by the controllers is set
to umax = 0.4 m/s, and the motor moments are saturated at an absolute value of 0.05 N m.
As before, the motor controllers employ a sampling time of 0.01 s, whereas the DMPC
controllers run with a sampling time of Ts = 0.05 s, which is the sampling time also
used for recording the results. The DMPC controllers use a horizon of length H = 20.
The weighting matrices in their cost functions are set to R = 0.6 I, T = 1 · 104 DI,
and D = I. The formation agents use the same parameters as in Section 5.2.1, albeit
with 80 particles per agent. Some of the scenarios studied in this section are based on
scenarios that have turned out to be challenging and instructive in preceding studies of the
transportation task [EbelEberhard18, EbelEberhard19, EbelEtAl21]. In contrast to this
thesis, the preliminary work uses predecessor schemes and employs a simpler, holonomic
model for the simulation of the omnidirectional mobile robots.

The transportation task’s character and the proposed scheme’s virtues already become
evident in the first considered scenario, with only a few robots cooperating. In this scenario,
a U-shaped, and therefore non-convex, object shall be transported along a path consisting
of straight-line segments. At each corner of the path, the object shall be rotated by +90◦

or −90◦ so that during translational movement, always the same edge of the object is
facing forward. The object is of mass mo = 4 kg and the diagonal of the damping matrix
is set to diag(Do) :=

[

10 kg/s 10 kg/s 10 kg m2/s
]

. It is assumed that the object’s mass
is evenly distributed, with its center of mass, therefore, being located outside of the object.
Initially, the object’s center of mass is placed on the first path point at x = y = 0. The
left-hand side of Figure 6.1 shows the simulation result for two cooperating robots. The
iconography in these and subsequent similar figures is the same as in previous figures, with
the transported object and the trajectory of its center of mass drawn in dark gray. Along
the path, different snapshots of the robots and the object are depicted. They correspond
to the times printed alongside them, with darker colors associated with later time steps.
To indicate the robots’ initial positions, the robots’ trajectories from the start to the
time point of the first snapshot are depicted in light blue. As can be seen, the path is



6.1 Simulative Investigation 119

-6 -4 -2 0 2
x [m]

-2

0

2

4

6

8
y

[m
]

16 s

40 s

90 s

109 s

144 s

-6 -4 -2 0 2
x [m]

-2

0

2

4

6

8

y
[m

]

16 s
32 s

64 s

86 s

125 s

Figure 6.1: Simulation results for two and three robots transporting a U-shaped object

tracked very accurately with the object’s center of mass. The robots reorganize multiple
times to manipulate the object’s pose as necessary. Quantitatively, the maximum and
median positional path tracking errors evaluate to εmax

p ≈ 0.042 m and εmed
p ≈ 0.0038 m,

respectively. These are determined by calculating the minimum Euclidean distance of the
object’s center of mass to the path in each time step between the first movement of the
object until the end of the path is reached. Hence, in this simulation devoid of exogenous
disturbances, the object barely leaves the path, showing that the DMPCp scheme is indeed
able to position the robots and thereby the object very accurately. Until the end of the path
is reached, the robots reorganize twice, making them take approximately 132 s to reach the
goal when neglecting the time it takes them to get into formation initially since that mostly
depends on how well the initial positions of the robots fit the synthesized formation. In
contrast, in the three-robot result on the right-hand side of Figure 6.1, the formation is not
reorganized at all. Consequently, the robots reach the end of the path a bit more quickly,
with the transportation taking about 114 s after initial formation acquisition. However,
the quantitative accuracy, which is already pristine for two robots, is not perceptibly
different, with the maximum and median positional tracking errors εmax

p ≈ 0.019 m and
εmed
p ≈ 0.0042 m, respectively. Subsequently, quantitative performance figures are only

given if they provide additional insight. As it will turn out throughout the analysis, it
is mainly the more qualitative differences that reveal most about the properties of the
proposed scheme, with the quantitative accuracy usually easily meeting the demands and,
thus, not being a very valuable differentiator between different scenarios and settings.

In that regard, as a more subtle difference, after having reached the end of the path, the
two-robot group still reorganizes, trying to perfect the positioning of the object. In contrast,



120 Chapter 6: Results from Cooperative Transportation

-6 -4 -2 0 2
x [m]

-2

0

2

4

6

8
y

[m
]

10 s

77 s

164 s

252 s

292 s

-6 -4 -2 0 2
x [m]

-2

0

2

4

6

8

y
[m

]

10 s

40 s

131 s

168 s

215 s

Figure 6.2: Two simulation results for three robots transporting a U-shaped object, with
the formation agents picking random feasible formations

the three-robot group can fully control the object’s pose without reorganizing. Hence, it
seems that, for three robots, transporting the U-shaped object along the prescribed path
is a comparatively simple task. Nevertheless, part of the perceived ease of transportation
can be attributed to the setup of the formation synthesis optimization problem. This
can be seen by running simulations where just any feasible formation is randomly picked
by the formation agents, which is realized by simply setting the cost function to zero.
Two exemplary results for this setup are depicted in Figure 6.2. Even at first glance,
a qualitative difference between the formations depicted in Figure 6.2 and those from
Figure 6.1 becomes apparent. The ones from the latter, using the proper cost function,
always have large levers at their disposal, with the robots always being located in corners
or at the ends of the edges of the dilated object. This is not the case for the formations
from Figure 6.2. Similarly, the variety of inner normal directions is usually greater in
the formations resulting from the proper cost function, making visible the influence of
the translational robustness term in the cost. Of course, since the modified formation
agents pick any feasible formation, there is a chance that they pick more favorable ones,
potentially even the same one as on the right-hand side of Figure 6.1. However, this is
not any more likely than picking one of the more unfavorable formations from Figure 6.2.
Nevertheless, the number of necessary reorganizations may be very different depending
on which formations are picked. For instance, in the left-hand result from Figure 6.2, the
robots reorganize 14 times until they reach the path’s end, whereas four reorganizations
happen in the right-hand case. On the obverse side, even in the case of the full cost
function, due to the nature of the optimization problem, the formation agents may converge
to an optimum that is only a local one. For instance, there may even be multiple local
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Figure 6.3: Simulation results for two robots transporting a U-shaped object, with
the object being rotated continuously in the left-hand side result, whereas the desired
orientation is kept constant on the right-hand side

minima of identical cost in the case of symmetry of the problem. Similarly, despite the
best efforts encoded in the cost function, a low-cost formation may still be useful in one
situation but not in another. After all, the future course of the path is not explicitly
included in the optimization. However, even in the worst case from 100 simulation runs, the
three-robot group using the original cost function has at most needed two reorganizations
to reach the goal, reliably yielding a very satisfactory tracking performance, with the
robots always having levers that are of maximal absolute value along their respective edges.
Nevertheless, having given a bit of intuition on the influence of the setup of the formation
synthesis problem, it is not the aim here to delve into a statistical analysis of the influence
of cost function settings and parameters on the transportation performance for a very
specific scenario. It is of more immediate methodological value to investigate the scheme’s
versatility for a constant set of parameters but over a wider range of scenarios. After all,
robotics is all about automating behavior without the human-lead tuning of parameters
to specific scenarios. In that sense, it is not crucial that the robots complete a specific
scenario with a minimal number of reorganizations, with the control and organization
parameters being tuned accordingly, but rather that the transportation is successful with
satisfactory accuracy in a wide range of different scenarios. Thus, henceforward, always
the same setup of the formation synthesis problem is used, with the same set of parameters
as in the simulations from Figure 6.1.

In the previous simulation results, most reorganizations happen around the corners of
the path, where the object needs to be rotated in-place, making it seem that this kind of
cornered path is rather challenging for transportation. Nevertheless, it should be examined
whether a good transportation performance can also be obtained for paths that require the
simultaneous translation and rotation of the object. Such a scenario can be found on the
left-hand side of Figure 6.3, where also the transportation direction changes in a smooth
manner. The desired orientation of the object is once again designed such that always
the same edge of the U-shaped object faces the direction of translation. The formation is
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reorganized twice until the path’s end, with the robots delivering a smooth transportation
performance. Indeed, it may seem that rotating the object along the path in this way might
benefit the transportation since the local pushing direction relative to the object-fixed
reference frame is constant. Hence, it might be more challenging to actually move the
object along this sinusoidal path while keeping its orientation constant. A result for this
case is depicted on the figure’s right-hand side, with the robots also reorganizing twice
before reaching the end. Evidently, the robots tend to pick different formations than in
the left-hand case, with the formations enabling a similarly successful transportation.

These findings cannot be generalized in a natural manner to completely different setups
with objects of different shapes. After all, there is no obvious explicit functional relationship
between the object shape and, e.g., the number of robots necessary for a reliable and
accurate transportation performance along specific types of paths. Hence, the depicted
results need not be representative for different kinds of transportation tasks. However,
if a group of robots ever faces a situation within a transportation scenario where the
transportation performance becomes unsatisfactory, e.g., because they do not find a
formation favorable for transportation or because they need to reorganize too often at the
expense of transportation time and accuracy, distributed robotics allows to let further
robots join the transportation task. With every robot added, the formation can have at
its disposal at least one additional contact normal, with the formation agents striving to
enlarge the cone spanned by the inner normals while including large levers of both signs.
Hence, if enough robots are present, the formation will be able to translate and rotate the
object in any direction without reorganizing. Thus, leveraging the flexibility of distributed
robotics is one way to ensure a successful transportation. In consequence, it is prudent to
examine whether the proposed approach indeed scales well to larger numbers of robots. It
has already been seen in Section 5.1 that the DMPC-based formation controller does scale
in that regard. However, it will still be interesting to see whether the overall transportation
scheme also works well for a larger group of robots, without, e.g., negotiation, organization,
and navigation around the object succumbing into chaos. To this end, a larger, Σ-shaped
object of mass mo = 8 kg is transported along a path that combines aspects from the
previous scenarios. At first, the object shall be translated along a straight-line segment,
followed by a sinusoidal section. In both of these segments, the object’s orientation shall
stay the same. In the third section of the path, the object shall be moved along a straight
line while rotating it linearly, reaching a rotation of 90◦ at the end of the path. A collection
of exemplary results for increasing numbers of robots is depicted in Figure 6.4. Once again,
as more robots are added, the robots acquire full control over the pose of the object, leading
to a very consistent and almost perfect tracking performance without reorganizations.
Only the two-robot group does reorganize in these results, acquiring a new formation
eleven times until the goal is reached and also concluding the transportation successfully.

While the results looked at so far provide great promise with regard to the scheme’s ability
to accommodate different scenarios and numbers of robots, it is not yet clear whether
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Figure 6.4: Simulation results for two to six robots transporting a Σ-shaped object
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Figure 6.5: Simulation results of a variably-sized group of robots transporting a Σ-shaped
object

it can actually deliver on the characteristic flexibility promised by distributed robotics,
with robots joining and leaving the cooperative task at system runtime. Consequently,
Figure 6.5 takes another look at the previous scenario with the Σ-shaped object, but with
five reorganizations of the robotic network happening in the course of the simulation. In
total, at three time instances, one of the robots leaves the transportation process, with the
robots leaving 56 s, 157 s, and 210 s after the start. The second and third robots to leave
later rejoin at the time instances 226 s and 280 s, respectively. Robots not partaking in
the cooperative task are set up to use the signals from their distance sensors to steer clear
of any robot or object to avoid getting in the way of the transportation process. Knowing
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Figure 6.6: Simulation result for six and ten robots transporting a Σ-shaped object using
the DMPCv controller

from previous scenarios that the formation controller and the formation agents work well
for different numbers of robots, this poses a challenge mostly to the proposed software
architecture and the amenability of the employed methods for quick reconfiguration.
Indeed, it is made evident by the results that the modular software architecture does
deliver on its promise.

Interestingly, in the results from Figure 6.4, the transportation takes increasingly more time
for the groups of four to six robots than it does for three robots, despite no reorganizations
happening in all of these cases. This is not surprising since it has already been observed in
Section 5.1.4 that the DMPCp scheme does become more conservative for larger numbers
of robots. This is already a scenario where the object needs to be transported across a
relatively large distance. In contrast, it has been stated previously that the applications
in this thesis focus more on precise positioning instead of fast long-distance transportation
due to the confinements of the experimentation area available for hardware experiments.
Nevertheless, if the focus is different, the DMPCv scheme can be employed. Results from
a proof-of-concept simulation that uses the DMPCv controller for transportation purposes
are illustrated on the left-hand side of Figure 6.6. The employed control parameters are
mostly the same as those for the DMPCp controller, except for the maximum change of
the control input being set to ∆umax = 0.04 m/s and the control input weight being chosen
to R = 0.1 I. Therein, to track a path with the DMPCv scheme, the current desired
formation velocity cvd is chosen such that it points into the direction of the path point
currently tracked. The velocity’s absolute value is chosen depending on the amount of
direction change within a window reaching ahead by 0.5 m along the path’s arc length.
The absolute value reaches 0.2 m/s in straight-line segments of the path. By nature, the
choice of cvd determines the trade-off between transportation speed and tracking accuracy.
As the results show, for the chosen setup, the object is transported much more swiftly than
with the DMPCp controller, reaching the goal after about 151 s when neglecting the initial
organization phase, which results in an average progression velocity of about 0.19 m/s
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along the path’s arc length. In this example, the tracking accuracy is also pristine. Still,
the quantitative influence of the desired common velocity cvd on the tracking accuracy is
not a priori clear in an explicit manner and thus not as easily tunable as when all control
parameters are contained within the same optimal control problem. Nevertheless, the
results strongly suggest that the DMPCv scheme may be a worthwhile choice for very large
numbers of robots or long-distance transportation, especially if the formation’s common
velocity is controlled in a way that is in accordance with the accuracy needs of the specific
application. In addition, the examined results indicate that the interplay between the
robots, including organization and negotiation, function well also for larger numbers of
robots.

It is worth noting that, except for degenerate cases, geometrically, six robots should
always be sufficient to be able to find a formation suitable for transportation without
reorganization. In principle, four of the robot positions could be picked to obtain contact
normals spanning a convex cone covering the whole plane, and the two remaining robot
positions could be chosen to allow for rotations in the clockwise and counter-clockwise
directions, respectively. Nevertheless, it is still interesting to see whether the proposed
scheme and software architecture do scale to even larger numbers of robots. In cases
where, e.g., the object is too heavy to be accelerated quickly enough with one of the
robot’s propulsion forces, additional robots with the same pushing direction can benefit
the transportation process. Although such variations of the transportation task are not
considered here, the scalability of the proposed approach to even more robots would
mean that also such a scenario could be accounted for. Therefore, on the right-hand
side of Figure 6.6, ten robots engage in transporting the Σ-shaped object using the
DMPCv controller as in the previous result. The robots automatically arrange successfully
around the object, despite its edges being considerably more crowded due to the additional
robots. As expected for this scenario, the additional robots do not perceptibly alter the
transportation accuracy, with the average translational velocity of the object amounting
to a similar value of 0.18 m/s. Nevertheless, the very satisfactory performance in this
10-robot-scenario shows that there is no fundamental issue preventing the scaling of the
proposed methods to larger numbers of robots.

A remaining question now is whether the proposed approach can also deal well with the
disturbances and challenges arising from real-world hardware experiments. The subsequent
section is devoted to answering this question while also considering additional object
shapes, giving a glimpse of the scheme’s versatility. Toward the end of the section, the
scheme’s limitations, as they have become apparent during experimentation, are discussed.
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6.2 Experimental Investigation

All hardware experiments in this thesis use a constant set of parameters in the optimization
problem of the DMPC controller and in the formation synthesis optimization problem. In
particular, these parameters are mostly identical to those used in the simulation scenarios
considered in the previous section. One of the few changes is that the sampling time
of the DMPC controller is set to 0.1 s instead of 0.05 s to more comfortably meet the
real-time requirements with the processing hardware available. The only other change to
the DMPC controller is that the robots’ maximum admissible directional velocity is set
to 0.2 m/s in absolute value. Due to its ease of parameterization, the DMPCp controller is
used throughout the section. Since the considered hardware robots do not have onboard
distance sensors, these continue to be simulated, with their range being reduced to 1.0 m,
helping to limit the calculation time of the sensor simulation. The experimentation area
available is of an approximate size of 4 m by 3 m, so the distance sensors can still cover
a good portion of the area. The general experimental setup is very similar to the setup
of the previously conducted formation control experiments from Section 5.1.4, with the
same tracking system and robotic hardware being used. The operating frequency of the
tracking system’s cameras is set to 50 Hz, and, apart from the robots, it also tracks and
publishes the pose of the transported object. Figure 6.7 shows photographs of the robots
as used in the experiments as well as exemplary objects equipped with markers to be
trackable by the tracking system. The diameter of the robots’ two upper layers is slightly
smaller than that of the lower layer so that only the lower layer comes in contact with the
object. Once again, due to limited onboard processing power, the control and organization
agents are not run on the robots themselves but on laboratory computers. The execution
of the various agents is split across two different computers, with one being the portable
laboratory computer used previously for formation control and the additional one having
an Intel Xeon E31245 CPU operating four physical and eight logical cores at a frequency

Figure 6.7: Photographs of the employed robots with objects to be transported



128 Chapter 6: Results from Cooperative Transportation

t = 0.00 s t = 20.00 s t = 50.00 s

t = 60.00 s t = 90.00 s t = 140.00 s

Figure 6.8: Four robots engaging in the transportation of a rectangular object, with one
of the robots not participating for a certain amount of time

of 3.3 GHz. The purpose of this is twofold. On the one hand, with the control and
organization agents, two different programs, which are multi-threaded themselves, need
to be executed for each robot. Hence, especially for larger numbers of robots, increasing
the number of real-time critical threads far beyond a single computer’s physical resources
can lead to unreliable cycle times of the involved programs. This is circumvented by
adding more processing resources to the robotic network. On the other hand, the setup
exemplifies that the involved programs can run anywhere on the network. Despite the
real-time critical programs running on external computers, as before, all information to be
exchanged is communicated via network communication through UDP multicast, with
realistic communication delays present in the network. Hence, as envisioned in Section 4.2,
the transition from simulations to hardware experiments indeed consists of replacing the
simulator with the real-world robots and the tracking system, with it being transparent
to the organization and control agents whether they govern the behavior of real or of
simulated robots. This nurtures the hope that many of the favorable properties observed
in simulations transfer well to real-world hardware experiments.

Consequently, with basically the same organization and control software being employed,
one of the least surprising properties to transfer well to experiments is the flexibility of
the robotic network, with the possibility to let robots join or leave the transportation
process. Therefore, in the first experiment, precisely this kind of scenario is considered.
Impressions from the experiment are illustrated in Figure 6.8, with the reference path
dashed in red and the past trajectory of the transported object drawn in dark blue. Both
are mapped onto the camera image in an approximate manner. Therein, four robots
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t = 0.00 s t = 20.00 s t = 40.00 s

t = 67.00 s t = 74.00 s t = 100.00 s

Figure 6.9: Three robots transporting a rectangular object along a path that either requires
pure translation or pure rotation

transport a rectangular object along a circular path, rotating the object at a constant
rate and completing one full rotation along the circle. This and all following objects are
manufactured using cardboard boxes that slide across the laboratory floor. Initially, all
four robots transport the object, but about 30 s after the experiment’s start, the robot
at the rectangle’s leading edge leaves the transportation process. The remaining robots
then reorganize, as can be seen in the third image of the figure. Then, they continue to
transport the object until about 67 s after the start, when the non-participating robot
receives a message to rejoin the transportation. Having reorganized once again, all four
robots pursue the transportation task together and complete it successfully. It is worth
noting that the robots are not preprogrammed in any way to reorganize, so they do not
anticipate any alteration of the robotic network. Instead, the messages letting a robot
join or leave are sent spontaneously by the event agent at the experimenter’s discretion.
Nevertheless, as is the case in simulations, robots joining or leaving is not the only reason
why the robots need to reorganize around the object. An example of this can be seen in
the experiment result depicted in Figure 6.9. Three robots shall transport the rectangular
object along a path consisting of two straight-line segments, translating the object without
rotating it. Only in the corner of the path, the robots shall rotate the object by 90◦ in
a counterclockwise fashion. Due to the formation chosen initially, the robots need to
reorganize to push the object downwards along the second straight-line segment. Evidently,
the formation agents self-reliantly agree on a suitable formation, the robots negotiate
their goal positions within the formation in a conflict-free manner and, therefore, after
reorganizing, the transportation is concluded successfully. Furthermore, together, the
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t = 0.00 s t = 10.00 s t = 30.00 s

t = 40.00 s t = 60.00 s t = 180.00 s

Figure 6.10: Four robots transporting a non-convex object along a path that either requires
pure translation or pure rotation

results from Figures 6.8 and 6.9 show that, also in practice, the proposed scheme is capable
of transportation both along paths requiring the simultaneous translation and rotation
as well as along paths requiring the pure translation or the pure rotation of the object.
Of course, the shape of the transported object in those scenarios is simple. However, it
is worth pointing out that there exists published research focusing explicitly on the task
of pushing rectangular boxes [MatarićNilssonSimsarian95, KubeZhang96, YamadaSaito01,
WangSilva06, RahimiEtAl19]. So it is reassuring to see that the proposed scheme can
also naturally accommodate this widely studied case. Nevertheless, what remains to be
shown is that the approach of this thesis can deliver on its promise of transporting more
complicated, non-convex objects also in experiments.

Figure 6.10 depicts a result in this regard, with the transportation happening along the
edgy path from the previous result. The first row of images gives an impression of the
initial organization process. It becomes evident that the robots need not be positioned
neatly around the object but can acquire a formation around a non-convex object also when
positioned farther off from even just one side of the object. Having organized safely, the
robots transport the object along the path without any large deviations. While such a path
may seem simple at first glance, its practical relevance is not to be underestimated. It is
easily conceivable that a path composed of segments of straight-line translation and in-place
rotation can already be very effective in transporting an object through an obstacle-ridden
environment. Since the straight-line segments can be small, using more general types of
paths may bring little advantage with regard to the types of environments that can be
successfully traversed. Nevertheless, the results for non-convex objects also extend well to
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t = 30.00 s t = 70.00 s t = 130.00 s

Figure 6.11: Four robots transporting a non-convex object along a circular path

t = 30.00 s t = 70.00 s t = 100.00 s

t = 50.00 s t = 110.00 s t = 170.00 s

Figure 6.12: Groups of five and six robots transporting a non-convex object along a path
that either requires pure translation or pure rotation

other types of paths, as exemplified by Figure 6.11. Furthermore, although not necessary
for transportation, additional robots can be put to use, as shown in Figure 6.12, with five
robots cooperating in the upper row and six in the lower row of the experiment snapshots.
Thus, all things considered, the results so far already show that the proposed scheme’s
characteristic properties seem to transfer well to hardware experiments. Nonetheless, to
get an impression of the scheme’s versatility, additional experiments have been conducted.
Their results are depicted in Figures 6.13-6.15, which show that the scheme can naturally
accommodate objects of different shapes, with the robots transporting U-, S-, and T-shaped
objects in a very successful manner.

Despite the results indicating that the scheme fulfills its design goals, a treatise on
experimental results can only be complete when also the scheme’s limitations are discussed.
Indeed, judging by the experience from experimentation, the key limitation is connected to
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t = 30.00 s t = 80.00 s t = 110.00 s

t = 150.00 s t = 190.00 s t = 210.00 s

Figure 6.13: Two robots transporting a U-shaped object

t = 30.00 s t = 50.00 s t = 90.00 s

Figure 6.14: Five robots transporting an S-shaped object

t = 30.00 s t = 60.00 s t = 150.00 s

Figure 6.15: Five robots transporting a T-shaped object



6.2 Experimental Investigation 133

the limited pushing forces of the robots. In particular, since the wheels’ rollers are small,
with their material being rather slippery, especially when dusty, and the robots being
comparatively small and lightweight, resulting in small normal forces between the wheels
and the ground, the attainable propulsion forces are limited. In consequence, it has been
observed in the experiments that the robots’ small wheels sometimes slip with the robot
not managing to push the object, at least for a limited time frame. Similarly, for instance
at the end of the experiment from Figure 6.11, there is a remaining error of about 4.5 cm in
the direction tangential to the path at the goal point while there is no perceptible motion
of the object anymore, despite not all control inputs vanishing. At times, robots struggle
to start moving the transported object, overcoming the object’s sticking friction, whereas
transportation then may run more smoothly when the object is in motion. However, the
results provide solace in the sense that the scheme seems to be able to deal well with this
kind of disturbance. Through the feedback obtained via communication from the other
robots, due to the DMPC formation controller, the robots try to move in a coordinated
manner. Therefore, if the subset of the robots responsible for providing the majority
of the pushing force is struggling, the other robots do, in effect, wait until the pushing
robots accomplish to move the object. Furthermore, no matter how the robots and the
scheme are designed, it is always possible to overwhelm the robots’ pushing capabilities.
Nevertheless, the experimental insight suggests potential measures to, in future research,
further enhance the transportation capabilities. A very straightforward possibility is to
alter the robot design, building a heavier robot with larger wheels providing better traction.
However, most likely, this would increase the robots’ size, causing the need for a larger
experimentation area to perform insightful experiments. Nonetheless, this presents a
purely technical solution approach not requiring any structural change of the proposed
scheme. Similarly, a form of onboard traction control could help enhance the attainable
propulsion forces. With regard to modifications of the scheme, a different formulation of
the formation synthesis optimization problem may be worthwhile to push heavier objects.
For instance, the cost function could be modified to maximize the sums of the robots’
exertable pushing forces in the required directions. Another idea could be to explicitly
include the object’s dynamic properties in the formulation of the distributed controller.
However, since, for instance, the object’s friction-related properties may be unknown or
changing during experimentation, this would most likely require online learning. As a
more direct measure, it may very well be that the transportation performance could be
improved further by directly tuning the formation control parameters, potentially adapting
them individually to the object to be transported. As stated, this thesis refrains from
doing so to instead show the scheme’s versatility without engaging in any arduous tuning
process. Nevertheless, in specific applications, where always the same types of objects need
to be transported, application-specific tuning may still be a viable way to perfect the path
tracking performance. In any case, the mere fact that the only noteworthy difficulty that
has become visible during experimentation is mainly caused by the physical limitations of
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the hardware robots, which classical engineering solutions could enhance, is a testament
to the potential of the proposed scheme and architecture.

With the witnessed variety of the transportation scenarios in the simulations and ex-
periments in mind, this is an excellent opportunity to pause for a moment and set in
relation the proposed scheme’s virtues to approaches that have appeared previously in the
literature. It has already been noted that many studies in which robots shall cooperatively
push objects limit their investigations to rectangular objects. Furthermore, even though
some of the studies in the literature rely on reinforcement learning-based methods, e.g.,
[KovačŽivkovićBašić04, RahimiEtAl19], a generalization to different object shapes does
not seem straightforward. Even if done successfully, it would most likely mean that the
transportation strategy would have to be retrained for new object shapes. Even beyond
approaches to box-pushing, it seems that practically all previous work on cooperative,
non-prehensile transportation with mobile robots is limited to very specific object shapes.
Intriguingly, the comparatively recent survey [TuciAlkilabiAkanyeti18] on cooperative
transportation does not list a single non-prehensile transportation scheme that can deal
with object shapes as general as this thesis’s approach. Most only consider one particular
shape of the transported object, with there being no pushing-based scheme that can deal
with different non-convex object shapes in an automated manner. It is also common that
only fixed numbers of robots are considered. Consequently, there seems to be a strong
indication that the scheme presented in this thesis is genuinely unique in its versatility,
which is realized by dint of the optimization-based approaches to organization and control.

Having seen that the proposed scheme is capable of moving objects along known paths, a
remaining question needing further inspection is whether the proposed global navigation
scheme can plan paths allowing a safe transportation through obstacle-ridden environments.
These investigations are performed simulatively to allow for large-scale scenarios beyond
the size of the hardware setup. It is worth noting that, in principle, to all aspects of the
scheme examined so far, it is not important where the path to be followed originates from.
Therefore, in a way, global navigation is decoupled from the other aspects, meaning that
different navigation schemes could be used without changing any other aspect, method, or
piece of software in the robotic network.

6.3 Transportation Through Obstacle-Ridden Envi-

ronments

The simulations in this section use the same settings as those conducted in Section 6.1,
with the objects’ masses being set to mo = 4 kg and, once again, being evenly distributed
over each object’s volume. However, different than previously, a global navigation agent
is running in the robotic network. In the first scenario, the robots transport a U-shaped
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object through an environment where all obstacles are known, i.e., the global navigation
agent is supplied with a map of the environment containing all obstacles. The same map is
also used in the simulation, meaning that the map represents the environment in an exact
fashion. In more general applications, without necessitating any alteration of the proposed
navigation scheme, the provided map may be a more coarse, outer approximation of the
real world. The binary map is chosen to be quadratic, with 400 cells in each direction,
which corresponds to the first two dimensions of the three-dimensional grid to be used for
planning. The third dimension, corresponding to the orientation of the object, is chosen
to have 181 cells. The object’s center of mass shall be moved from the start position

at
[

7.25 1.75
]
T

m to the goal located at
[

0 −5.25
]
T

m. At the end of the path, the
object’s open end shall face into the negative x-direction. Three robots cooperate in
the transportation, although one of the robots joins and leaves multiple times during
the transportation. It leaves about 48 s after the start, rejoining about 147 s into the
simulation, and once again leaves and rejoins about 316 s and 355 s into the transportation
process, respectively. The simulation results are depicted in Figure 6.16, with the U-shaped
object and the environment’s obstacles being drawn in dark gray. Figure 6.17 provides
insight into the operation of the global navigation agent. Therein, areas covered by the
object itself during the planned motion are shaded in dark blue, with the planned path
of the object’s center of mass drawn on top of it. Around the latter and around the
obstacles, areas shaded in lighter colors correspond to the dilated versions of the obstacles
and the object. The results indicate that the global navigation agent can deal well with
the given environment, devising a path that the formation can follow with typical accuracy.
Due to the constructive, geometric formulation of the global navigation process and the
already investigated path-following properties of the proposed scheme, this certainly is not
unanticipated. Nevertheless, it remains to be seen whether the global navigator can indeed
deal with unknown obstacles. To that end, a second scenario is considered. It is designed
to include both known and unknown obstacles to demonstrate that such a setting can also
be accounted for. The latter can be of significant practical value, e.g., with robots regularly
operating in a warehouse or manufacturing facility where certain obstacles are always
present and always in the same locations, for instance because they are load-bearing parts
of the building. Thus, these fixed structures could be mapped once at a high accuracy
so that the robots only have to register in real-time non-permanent obstacles. Therefore,
if the non-permanent obstacles do not significantly influence the general direction of
transportation, the duration of the transportation can potentially be reduced greatly.
Furthermore, the influence of using lower-quality sensors in real-time is reduced if most
major obstacles are already registered at high accuracy. Due to this motivation, the final
result of this thesis considers an environment containing four rhombic obstacles, forming
four narrow passageways, with the upper obstacle being unknown initially. The start

position
[

−8 8
]
T

m and the goal position
[

7.5 7.5
]
T

m are chosen so that the object
needs to be rotated in-between the rhombic obstacles. In the goal point, the longer sides of



136 Chapter 6: Results from Cooperative Transportation

18 s

70 s

168 s

240 s

342 s

380 s

-12 -6 0 6 12
x [m]

-12

-6

0

6

12

y
[m

]

Figure 6.16: Simulation results for up to three robots transporting a U-shaped object
through a known environment

Figure 6.17: Snapshots of the program output from the global navigation agent in the
simulation scenario from Figure 6.16
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the rectangular object shall be orthogonal to the x-direction. Navigation happens on a grid
with 645 cells in the x-direction, 480 cells in the y-direction, and 361 cells that discretize
the object’s orientation. Once again, some of the six robots cooperating join and leave,
with robots 5, 4, and 6 leaving 30 s, 60 s, 105 s into the transportation process, respectively.
Robots 4 and 5 rejoin 80 s and 100 s after the start. Consequently, the robots complete the
transportation with fewer robots than engaged in the task initially. A simulation result of
this scenario is illustrated in Figure 6.18, with the navigation agent’s corresponding output
being given in Figure 6.19. Evidently, the robots successfully discover the upper obstacle
during transportation. Furthermore, the navigation agent achieves to find a suitable path
for the object through the narrow passageways, backing up the object into the direction of
the lower obstacle to maneuver from the upper left to the upper right passageway. Once
again, path tracking is more than accurate enough to avoid collisions with the obstacles.
Hence, it can be concluded that the transportation scheme tested in the previous sections
can be coupled to a mapping and navigation scheme to allow the safe transportation of
obstacles through environments that may contain unknown obstacles.

Notwithstanding these results, some natural constraints on the applicability of the nav-
igation scheme have to be mentioned. For a successful transportation in the presence
of unknown obstacles, there must always be at least one robot that can perceive nearby
obstacles without them being occluded by the object being transported. Similarly, when
applied to real-world hardware, there is an adverse relationship between the required
sensor range and the processing capabilities of the robot running the global navigation
agent. If the sensor range is excessively short, it could be that the robots collide with an
unknown obstacle because the navigation agent is still busy with its calculations. Clearly,
this can be alleviated by reducing the admissible speed of the formation or even of the
robots themselves. Of course, these restrictions are natural to the task of navigation
and not exclusive to what has been studied here. Beneficially, the modular, distributed
software architecture does allow for a technical solution to the occlusion problem without
having to modify the remaining part of the organization and control loop. Since the global
navigation agent can run on any entity in the network, it could be run on an additional
robot, thereby playing to the strengths of distributed robotics. For instance, it would
be conceivable to have a surveillance drone fly above the robots, being able to clearly
perceive the environment around the object from its vantage point. Even in more general
terms, leveraging the advantages of a heterogeneous robotic swarm composed of robots
with different capabilities may be a fruitful topic for future research. Following this line of
thought toward a more dynamic interaction between dissimilar robots, it is conceivable
that flying robots could pick up objects to transport them over obstacles insurmountable
by ground-based ones. Indeed, a successor project, building upon the work conducted
for this thesis, strives to realize advantages of this kind. Therefore, to render a precise,
summarizing picture of the foundations laid for future work, it is time to draw final
conclusions from this thesis’ disquisition on cooperative mobile robotics.
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Figure 6.18: Simulation results for up to six robots transporting a rectangular object
through an only partly known environment

Figure 6.19: Snapshots of the program output from the global navigation agent in the
simulation scenario from Figure 6.18
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Chapter 7

Conclusion and Outlook

Cooperative distributed robotics can be as challenging to engineers as it is promising in
furthering the state of the art of what is achievable with regard to robotic automation. A
characteristic trait even of non-distributed robotics is its interdisciplinary nature, bringing
together control engineering, mechanical modeling, algorithmics, as well as hardware and
software design and development. In distributed robotics, problems related to some of
these fields become even more intricate due to corresponding solution approaches needing
to be inherently distributed, whereas communication and concurrency introduce a whole
new set of challenges. However, the results obtained in this thesis for the cooperative,
pushing-based transportation of polygonal objects show that facing these challenges can
be very much worth the effort. The simulations and hardware experiments that have been
presented demonstrate that all promised advantages of distributed robotics and control can
be put into practice. This includes the robotic network adapting entirely self-reliantly to
different objects to be transported, to different paths to transport them along, to different
numbers of robots engaging in the transportation, and to robots joining and leaving in the
midst of transportation. This kind of plug-and-play control is rarely demonstrated with
real hardware involved.

Beneficially, the scheme developed for the task implicitly makes clear that the inter-
connected array of challenges can be atomized into sub-aspects that can be dealt with
independently after having defined clear interfaces. This allows building sub-approaches
rooted in theory already available in corresponding research areas that cater to a more
focused set of challenges. For instance, the devised scheme uses a distributed model
predictive controller as a formation controller and relies on distributed optimization to
synthesize formations useful to manipulate the object as currently necessary. By using
optimization-based approaches for the key challenges, the resulting scheme can adapt to
different scenarios in a completely self-reliant manner, without arduous, scenario-dependent
parameter tuning being necessary. The experience in developing the scheme has also
shown that it is intriguingly intuitive to formulate the tasks to be solved in the form
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of optimization problems, with the parameters that remain in the problems having a
clear meaning by construction. All these aspects have led the cooperative transportation
approach devised in this thesis to be uniquely versatile, by far surpassing all schemes known
to the author that cater to a similar, pushing-based transportation task. Furthermore,
all aspects of the task are dealt with in an encompassing manner. This means that also
challenges such as self-reliant task allocation are solved by the proposed scheme – after
all, since there is no centralized decision-making instance, the robots need to negotiate
self-reliantly which robot takes which position in the formation. Methods tailor-made for
the local and global navigation needs of the task were also introduced.

Furthermore, in its quest to master the cooperative transportation task, this thesis makes a
number of contributions beyond the versatile transportation scheme itself. This includes the
introduction and mechanical modeling of a mobile robot design for research on distributed
control. The robot is very maneuverable since it can move omnidirectionally, nurturing the
hope that it can be employed in a wide variety of investigations, beyond the transportation
task that it was primarily designed for. In addition, as a reaction to the challenges faced
when developing a complicated distributed system, a general software architecture was
proposed based on requirements typical and characteristic to distributed robotics. This
includes the insight to distinguish distributed control from less time-critical distributed
organization tasks and has lead to a very modular software architecture based on multicast
communication. After all, it is not only real-time automatic control that needs to be
distributed when robots shall cooperatively and self-reliantly solve a practical task. The
architecture allows different pieces of software to run concurrently at different or even
variable sampling rates on any device in the network. In particular, the very same software
stack can be used for simulations and hardware experiments, with it being transparent to
the robot software whether it governs a simulated or a real robot. This helped significantly
to smooth the transition from simulations to hardware experiments in the work on this
thesis. Furthermore, two variants of a formation control setup based on distributed model
predictive control were proposed and analyzed independently from the transportation task
since the setup may be of value in all robotics applications where formation control can be
of use. The two variants either allow to control the absolute position of the formation or
the common velocity of the formation while adhering to input constraints. Similarly, for
comparison purposes, a more traditional setup, relying on results from algebraic graph
theory, but modified to respect input constraints, was introduced. It has been found that
only the predictive control-based approach allows to intuitively weigh differently the control
goals of moving the formation center and of maintaining the formation shape without
the consideration of input constraints leading to superfluous conservativity. Robotics
researchers may, therefore, consider the proposed predictive controllers as an alternative to
more widely used types of formation controllers. Moreover, in response to the properties
of the optimization problem solved to devise formations, a custom, distributed stochastic
optimizer, that can handle constraints, was proposed based on augmented Lagrangian
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particle swarm optimization [SedlaczekEberhard06]. In the future, it may prove to be
a very useful tool also in the solution of other organizational problems or even in very
large-scale optimization tasks as they may appear, e.g., in structural optimization.

These contributions set the stage for worthwhile areas of future research. Clearly, motivated
by this thesis’s promising results, a direct continuation of the work may be fruitful. In
particular, the approach could be developed further to solve tasks even more engaging
from a mechanical perspective, e.g., robots cooperatively transporting or manipulating a
deformable object. To that end, it may be promising to equip the robots with force-sensing
capabilities and to employ more complex mechanical models within the organization
and control schemes, beyond mostly kinematic considerations. However, research in this
area may quickly reach territory where not all aspects of the dynamics can be modeled
appropriately solely based on first principles. It may become necessary to infer parts of
the model using learning methods, potentially even at system runtime. For instance, the
robots might try to identify specific mechanical properties of the transported deformable
object. Tasks like this may also benefit significantly from augmenting the robotic swarm
with additional sensing capabilities. Furthermore, the devised software architecture may be
employed to deal with cooperative robotic tasks beyond transportation and manipulation,
such as the cooperative search for targets [HuEtAl14, TangEtAl18].

Another research direction may seek the cooperation between robots of different propulsion,
manipulation, and perception capabilities, venturing toward a heterogeneous robotic
swarm. In the same way, when focusing on formation control as a building block of
higher-arching cooperative behavior, it may have merit to extend the proposed setup based
on distributed model predictive control toward robots with more severe non-holonomic
kinematic constraints. While already interesting on its own, this may serve as a good
stepping stone to allow the usage of simpler robots for transportation tasks or other
cooperative benchmark problems. In that regard, differentially-driven robots may be a
simple and popular alternative to more complicated, omnidirectional robots.

On another note, in this thesis, imperfections of communication merely acted as a distur-
bance that was not inspected in greater detail. Indeed, with the given network setup, the
scheme worked well despite message losses and communication delays. Nevertheless, both
in the interest of possible applications in a productive environment and for the usage with a
less reliable network, research work in this direction can be very valuable. Recent results to
be found in the literature nurture the hope that continued progress will be made in this area
in the future, see, e.g., [JacobEtAl16, BaumannEtAl19, LinsenmayerHertneckAllgöwer21].
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Appendix

A.1 Expressions in the DMPC Formation Controller

The matrices in the multi-parametric quadratic program representation of the DMPC
formation controller from Section 5.1.1 and Equations (5.20)-(5.25) are given by

H = 2
(

MR + MT

Ue
MQMUe

+ ST

LM
T

θ C
TTCMθSL

)

, (A.1)

F =







2MT

AMQMUe

−2TCMθSL

2MT

ABp
MQMUe







, (A.2)

Mt1 =
[

AH−1Be AH−2Be · · · Be 0

]

− MθSL, (A.3)

Mt2 = −
[

AH
0 AH−1Bp AH−2Bp · · · Bp 0

]

, (A.4)

Md =
[

M̄d 02(H−1)×nθ

]

(A.5)

with the matrix of zeros 0a×b ∈ R
a×b. Therein, the matrices

MA =








A0

...
AH−1








∈ R
nxH×nx , (A.6)

MABe
=


















0 · · · · · · · · · 0 0 0

Be 0 · · · · · · 0
...

...

ABe Be 0 · · · 0
...

...
...

. . . . . . . . .
...

...
...

...
. . . . . . . . . 0

...
...

AH−2Be AH−3Be . . . . . . Be 0 0


















∈ R
nxH×(2H+nθ), (A.7)
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MABp
=


















0 · · · · · · · · · 0 0 0

Bp 0 · · · · · · 0
...

...

ABp Bp 0 · · · 0
...

...
...

. . . . . . . . .
...

...
...

...
. . . . . . . . . 0

...
...

AH−2Bp AH−3Bp . . . . . . Bp 0 0


















∈ R
nxH×(2(N−1)H+2) (A.8)

are useful in the state prediction over the horizon, which can be used together with the
matrices

MQ =








Q 0

. . .

0 Q








∈ R
Hnx×Hnx , (A.9)

MR =










R 0

. . .

R

0 0










∈ R
(2H+nθ)×(2H+nθ), (A.10)

M̄θ =








Mθ

. . .

Mθ








∈ R
(Hnx)×(Hnθ), (A.11)

SL =
[

0 . . . . . . Inθ

]

∈ R
nθ×(2H+nθ), (A.12)

S̄L =








0 · · · 0 Inθ

...
...

...
0 · · · 0 Inθ








∈ R
Hnθ×(2H+nθ), (A.13)

MUe
= MABe

− M̄θS̄L (A.14)

to express the cost function and terminal equality constraints in matrix-vector form.
Finally, the matrix

M̄d =











−1 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1











⊗ I2 ∈ R
2(H−1)×(2H) (A.15)

is used in the inequality constraints through expression (A.5).
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Abbreviations, Symbols, and Notation

In the following, all important and reoccurring abbreviations and symbols are given to
provide an overview of the notation used throughout the thesis. In general, vectors and
matrices are printed in bold math font, whereas scalar quantities are displayed in normal
math font. Sets are usually written in calligraphic math font. Quantities only appearing
within one section are usually only introduced and defined therein.

Abbreviations

AGTC formation controller based
on algebraic graph theory

AGTCp graph-algebraic formation
controller controlling the
formation’s position

AGTCv graph-algebraic formation
controller controlling
the formation’s common
velocity

ALPSO augmented Lagrangian par-
ticle swarm optimization

CPU central processing unit

DALPSO distributed augmented
Lagrangian particle swarm
optimization

DARE discrete-time algebraic
Riccati equation

DMPC distributed model
predictive control

DMPCp DMPC-based formation
controller controlling the
formation’s position

DMPCv DMPC-based formation
controller controlling
the formation’s common
velocity

KKT Karush Kuhn Tucker

LQR linear quadratic regulator

MIMO multiple-input multiple-
output

MPC model predictive control

PI proportional integral

PID proportional integral
derivative

PSO particle swarm optimiza-
tion

ROS robot operating system

SISO single-input single-output

TCP transmission control
protocol

UDP user datagram protocol

Latin Minuscules

ℓ(x,u) stage cost of a predictive
controller

nE number of edges of a graph

nu dimensionality of the input
vector of a dynamical system

nV number of nodes of a graph

nx dimensionality of the state
vector of a dynamical system

ny dimensionality of the output
vector of a dynamical system
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oα absolute position of the origin
of the reference frame Kα,
given in the coordinates of
and relative to the inertial
frame of reference

q vector of generalized
coordinates of a multibody
system

rR radius of the circular footprint
of the omnidirectional mobile
robot

u input vector of a dynamical
system

u(· | t) input sequence planned by a
predictive controller at time
step t

u⋆(· | t) optimal input sequence
planned by a predictive
controller at time step t

umax absolute value of the maxi-
mum admissible directional
velocity of the considered
robot

∆umax absolute value of the
maximum desired change of
the directional velocity of the
considered robot

cvd desired common velocity of
the formation

w̌ weight function in a weighted,
directed graph

x state vector of a dynamical
system

x(· | t) state sequence predicted by a
predictive controller at time
step t

x⋆(· | t) optimal state sequence
predicted by a predictive
controller at time step t

cx position of the geometric
formation center

cxd desired position of the
geometric formation center

F̌
ixd desired relative position of the

ith robot in the formation
y output of a dynamical system

Latin Majuscules

A⇀
G adjacency matrix of the weighted

directed graph
⇀

G
B⇀

G incidence matrix of the directed
graph

⇀

G
CS center of mass of the transported

object

D diagonal weighting matrix
appearing in the stage cost of
the DMPC formation controller

E set of edges of an undirected
graph

⇀

E set of edges of a directed graph

ŠE function describing the edges of
the dilated object

G undirected, or simple, graph

⇀

G directed graph

H length of the prediction horizon
of a predictive controller

I identity matrix

In identity matrix with n rows and
columns

I interval, I ⊂ R

J cost function of a predictive
controller

Jf terminal cost of a predictive
controller

K diagonal gain matrix appearing
in the AGTC formation
controllers
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Kα reference frame, with α being an
identifier

KF formation-fixed reference frame

KI inertial frame of reference

KR body-fixed reference frame, fixed
to the center of mass of a mobile
robot

KS body-fixed reference frame, fixed
to the center of mass of the
transported object

L Lagrangian function

LA augmented Lagrangian function

L Laplacian matrix of a graph

Na number of active robots

Oα origin of the reference frame Kα,
with α being an identifier

P convex polytope

Q weighting matrix weighing the
states in the stage cost of a
predictive controller

R weighting matrix weighing the
inputs in the stage cost of a
predictive controller

R set of robot indices

Ra index set of the active robots

ISα rotation matrix transforming
coordinates of a vector given in
the basis of Kα to a coordinate
vector given in the basis of KI

T weighting matrix weighing
the deviation of the artificial
steady state from the setpoint
in the stage cost of a predictive
controller for tracking

Ts sampling time of the formation
controllers

U input constraint set of a
predictive controller

V Lyapunov function (candidate)

V set of nodes of a graph

X state constraint set of a
predictive controller

Xf terminal set of a predictive
controller

Non-Latin Characters

i εrel relative formation control error
of the ith robot

ω angular velocity vector

General Mathematical Expressions and Symbols

1n vector of ones of dimension n

ã skew-symmetric matrix
corresponding to the
vector a ∈ R

3

A ⊗ B Kronecker product of the two
matrices A and B

R+ set of all positive real numbers

‖v‖2
V squared, weighted norm, eval-

uating to vTV v for a vector v
and a symmetric, positive
semi-definite matrix V of
fitting dimensions

Vi,: the ith row of matrix V

V:,j the jth column of matrix V
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Vi1:i2,: matrix block of matrix V

including rows i1 to i2 ≥ i1

V:,j1:j2
matrix block of matrix V

including columns j1

to j2 ≥ j1

αz a kinematic quantity z given
in the coordinates of the
reference frame Kα

α̌z a kinematic quantity z given
in the coordinates of and
relative to the reference
frame Kα

i• a quantity • of the ith robot
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