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Motivational Example: Optimization of the Rear Suspension of a Vehicle 

 

technical system 

  
  

 

 

 

 

 

mechanical model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mathematical model 

 

 

� : vehicle body mass � : wheel and axle mass ý  : stiffness of suspension þ : damping of suspension ýW : stiffness of tire ý : street profile 

��� = 2ý(� 2 �w) 2 þ(�� 2 ��w) 2 �� ���w =    ý(� 2 �w) + þ(�� 2 ��w) 2 ýw(�w 2 ý(þ)) 2 �� 
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Motivational Example: Parameter Identification of a Flexible Beam 

 

 

 

The Euler-Bernoulli equation describes the relationship between a beam’s deflection and 
the applied load on the beam and is given by 

 ý� d4ý(þ)dþ = �(þ) 

   

with the deflection in the �-direction ý(þ) and the distributed load �(þ). The constant pa-

rameters of the equation are Young’s modulus ý and the area moment of inertia �. For a 

cantilever beam with a single force þ acting on the free end, the solution of the Euler-Ber-

noulli equation is given by  ý(þ) = �þ (�þ2 − 13 þ3) 

with � = (2ý�)−1. 
 

In practice, the parameter �, incorporating ý and �, might be unknown for the given beam. 

However, it is possible to identify the missing parameter through measurements, by applying 

a known force þ at the end of the beam and measuring the bending � = ý(þ). Multiple dif-

ferent measurements result in the data set � = {(þ1, þ1, �1), & , (þ� , þ� , ��)}. The goal is to 

find a value for the unknown parameter � > 0 that minimizes the mean squared error (MSE) 

of the model prediction from the measurements, which can be formulated as a least-squares 

optimization problem of the form 

 �⋆ = argmin�  ____________________________ 
                s.t.     ____________________________ 

 

with ÿ = [þ1 (�þ12 − 13 þ13) ⋯ þ� (�þ�2 − 13 þ�3 )]⊤
 and Ā = [�1 ⋯ ��]⊤. 

 

 

þ � þ 

� 
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Data Set from Measurements, � =  1 m 
 

# force þ [�] position þ [�] bending ý(þ) [��] 
1 100 0.1 0.1081 

2 100 0.2 0.0465 

3 100 0.3 0.4295 

4 100 0.4 1.0426 

5 100 0.5 1.0188 

6 100 0.6 1.8866 

7 100 0.7 2.6091 

8 100 0.8 2.3853 

9 100 0.9 3.5378 

10 100 1.0 4.5390 

 

Result of the Least-Squares Optimization  
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Chebyshev Approximation Problem 
 

Instead of minimizing the mean squared error, it may be desirable to minimize the maximum 

deviation of the model prediction from the measurements, i.e., to solve the optimization 

problem �⋆,c = argmin� max�∈{1,& ,�} ________________ 
 s.t.      ______________, 

 

which is a non-smooth problem. However, using  � ≔  [� �]⊤, it can be rewritten as a linear 

program (LP) in the form min�∈ℝ2   ______________________  s.t.      _____________________, 
              _____________________, 
              _____________________. 
 

This LP can be solved efficiently with solvers such as the Simplex algorithm. For the data 

set from above, this yields the results shown below with the solution denoted as �⋆ =[�⋆,c �⋆]⊤.  
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Automatic Differentiation 

Graph for Ā(þ1, þ2) = 2 þ1þ2 + ln(ÿþ2) 

Forward mode: 

'þ1 = [ ]    ,              'þ2 = [ ] 

þ3 = __ __ __ __ __   ,    'þ3 =  ∑ ∂þ3∂þĀ 'þĀĀ(þ3={2}          =   
∂þ3∂þ2 'þ2                  = [ ] 

þ4 = __ __ __ __ __   ,    'þ4 = ∑ ∂__ __ __ ∂__ __ __ 'þĀĀ(þ4={ }  = __ __ __ __ __ __ __ __ = [ ] 

þ5 = __ __ __ __ __   ,    'þ5 = ∑ ∂__ __ __ ∂__ __ __ 'þĀĀ(þ5={ }  

                                                = __ __ __ __ __ __ __ __  + __ __ __ __ __ __ __ __  = [ ] 

þ6 = __ __ __ __ __   ,    'þ6 = ∑ ∂__ __ __ ∂__ __ __ 'þĀĀ(þ6={ }  

                                               = __ __ __ __ __ __ __ __  + __ __ __ __ __ __ __ __  = [ ] 

Ā = þ6 ≔ 2þ5 + þ4 

þ4 ≔ ln(þ3) 

þ3 ≔ ÿþ2 

þ5 ≔ þ1 þ2Τ  

þ1 þ2 

�þ6�þ5 =   ________  �þ6�þ4 =   ________ 
 

�þ5�þ1 =   ________ 
 �þ5�þ2 =   ________ 

 �þ3�þ2 =   ________ 
 

�þ4�þ3 =   ________ 
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Reverse mode: 

þ3 = __ __ __ __ __ __ __ __    ,                              þ4 = __ __ __ __ __ __ __ __    , 
þ5 = __ __ __ __ __ __ __ __    ,                      Ā = þ6 = __ __ __ __ __ __ __ __  
þ6 = �þ6�þ6 = __ __ __ __ __ __ __ __    , 
þ5 =   ∑ þĀ �þĀ�þ5Ā(ý5={6}                             = __ __ __ __ __ __ __ __  = __ __ __ __ __ __ __ __   , 
þ4 = ∑ __ __ __ __ __ __ __ __ Ā(ý__ __ ={ }  = __ __ __ __ __ __ __ __  = __ __ __ __ __ __ __ __   , 
þ3 = ∑ __ __ __ __ __ __ __ __ Ā(ý__ __ ={ }  = __ __ __ __ __ __ __ __  = __ __ __ __ __ __ __ __   , 
þ2 = ∑ __ __ __ __ __ __ __ __ Ā(ý__ __ ={ }  = __ __ __ __ __ __ __ __  + __ __ __ __ __ __ __ __     
                                                                  = __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __   , 
þ1 = ∑ __ __ __ __ __ __ __ __ Ā(ý__ __ ={ }  = __ __ __ __ __ __ __ __  = __ __ __ __ __ __ __ __   , 
dĀdþ = [  

 ∂Ā∂þ1∂Ā∂þ2]  
 = [þ1þ2] = [__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ ] . 
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Artificial Neural Networks 
 

Artificial neural networks (ANNs) are nowadays a popular machine learning technique. The 

goal is to identify or learn a function that fits a given data set, similar to A2. The structure 

and design of the network predefine a certain structure of the function that will be identified. 

In the end, the identification or learning task comes down to determining optimal values for 

a (usually large) set of network parameters (so-called weights) to optimally represent the 

data or, better yet, the process/relationship represented by the data. Classic linear regres-

sion like on A2 fits an ansatz consisting of a linear combination (i.e., weighted sum) of basis 

functions to the data. In contrast, (deep) artificial neural networks owe their expressiveness 

to the fact that nonlinear functions are composed/nested many times. To train the network, 

i.e., to optimize its parameters so that it fits a training data set, one usually uses gradient-

based optimization algorithms. However, the network’s structure, which is dominated by 

function compositions, makes it cumbersome to obtain gradient information by hand, which 

is why automatic differentiation is used for that. This is demonstrated subsequently for a 

very simple artificial neural network, with two input neurons, one output neuron, one hidden 

layer with three neurons and a classic feedforward structure. The sigmoid function  �(Ā) ≔ 11 + ÿ2�    ⟹  ddĀ �(Ā) = �(Ā)(1 2 �(Ā)) 

is used as the activation function and, for simplicity, no bias neurons are considered.  

 

For simplicity, we choose ā(Ā) ≔ Ā, which yields the output 
 ÿ = ý7 σ(ý1þ1 + ý2þ2) + ý8 σ(ý3þ1 + ý4þ2) + ý9 σ(ý5þ1 + ý6þ2). 
 

For training purposes, i.e., to optimize the weights � ≔ [ý1 ⋯ ý9]⊤ so that the network 

fits a data set, a cost function (also called loss function in machine learning) is needed, 

which, here, is set to Ā(�) = 12 (ÿ 2 ÿd)2. 
Therein, ÿd represents a desired output. Usually, for training in practical tasks, the cost func-

tion would consider all data points in the data set, e.g., the mean squared output error over 

all data points. Here, for shortness of notation, an individual data point is considered. The 

goal is now to obtain the gradient of the loss 'Ā(�) so that gradient-based optimization can 

be used to optimize the weights. We focus on obtaining ∂Ā ∂ý1Τ ; the rest of the gradient is 

obtained analogously.  

 
 

þ1 

þ2 

�  

�  

�  ā  ÿ 

ý1 ý2 ý3 ý4 ý5 ý6 

ý7 ý8 ý9 

input layer hidden layer output layer 
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Automatic Differentiation (Reverse Mode) 
 

a) Give the index sets �ÿ , � ( {1, & , 24}, for the input quantities and the introduced 

(intermediate) quantities as far as they are necessary to obtain �Ā �ý1Τ . 

b) Compute the scalar gradients ý̅Ā = ∂Ā �ýĀΤ  for the output quantity and those 

intermediate quantities that are necessary to obtain �Ā �ý1Τ .  

Hint: Use the relationship ý̅Ā = ∑ ý̅ÿ �ýÿ�ýĀ ÿ(ýĀ  for the intermediate quantities.       

c) Give ∂Ā ∂ý1Τ  in terms of the input quantities � = [ý1 ⋯ ý9]⊤.  ∂Ā∂ý1 = = ⋯ = þ1(ý7 σ(ý1þ1 + ý2þ2) + ý8 σ(ý3þ1 + ý4þ2) + ý9 σ(ý5þ1 + ý6þ2) 2 ÿd) ý7 σ(ý1þ1 + ý2þ2) (1 2 σ(ý1þ1 + ý2þ2)) 

Ā = ý24 ≔ (1 2Τ ) ý232  

ý10 ≔ ý1þ1 ý11 ≔ ý2þ2 ý12 ≔ ý3þ1 ý13 ≔ ý4þ2 ý14 ≔ ý5þ1 ý15 ≔ ý6þ2 

ý1 

�ý10�ý1 =   ________ 
 

ý2 ý3 ý4 ý5 ý6 

ý16 ≔ ý10 + ý11 ý17 ≔ ý12 + ý13 ý18 ≔ ý14 + ý15 

ý19 ≔ σ(ý16) ý20 ≔ σ(ý17) ý21 ≔ σ(ý18) 

�ý16�ý10 =   ________ 
 

ý22 ≔ ý7ý19 + ý8ý20 + ý9ý21 ý9 ý8 ý7 

ý23 ≔ ý22 2 ÿd 

�ý19�ý16 =   _________________________ 
 

�ý23�ý22 =   ________ 
 

�ý24�ý23 =   ________ 
 

�ý22�ý19 =   ________ 
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Automatic Differentiation 

For optimization purposes the sensitivities of the function �(�) = �1 sin(�2) − 5�3, with � =[�1 �2 �3]⊤, shall be calculated. 

a) Complete the graph for the function �(�) and write down the derivatives along the arcs. 

 

 

 
 

  

�3 

�4 = _____ 

�2 
 

�1 

��4��3 = _______ 
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Firstly, use the forward mode to compute the gradient of the function. 

 

b)  Give the index sets þÿ for your introduced intermediate and output quantities. 

 

 

 

 

 

 

c)  Compute the gradients for all input and intermediate quantities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d)  Give the gradient of the function �(�) in terms of the input quantities � = [�1 �2 �3]⊤. 
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Use also the reverse mode to compute the gradient of the function. 

 

e)  Give the index sets ýÿ for the input quantities and the introduced intermediate quantities. 

 

 

 

 

 

 

f)  Compute the scalar gradients �Ā for the output and intermediate quantities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g)  Give the gradient of the function �(�) in terms of the input quantities
 
� = [�1 �2 �3]⊤. 

 

 

 

 

 

 

 

 

 

h) Check your result by direct differentiation of the function �(�). 
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Tool 1: CasADi for MATLAB 

CasADi1 is an open-source tool for nonlinear optimization and automatic differentiation. It is 

written in C++ but is most conveniently used via full-featured interfaces to MATLAB or Py-

thon. Applications range from academic teaching to fields such as optimal control, robotics, 

and aerospace. In order to use CasADi, an appropriate version can be downloaded2 and 

added to the MATLAB search path.  
1 import casadi.* % add CasADi toolbox 

2 x      = SX.sym(8x9,2); % create 2-D variable x 

3 f      = x(1)*x(2) – sin(x(2)); % define the function expression 

4 gf     = jacobian(f,x); % calculate gradient expression 

5 Hf     = jacobian(gf,x); % calculate Hessian expression 

6 gf_fun = Function('gf',{x},{gf}); % create functions for … 
7 Hf_fun = Function('Hf',{x},{Hf}); % … evaluation of expressions 
8 x0     = [1, 0]; % define evaluation point 

9 y1     = gf_fun(x0) % evaluate gradient 

10 y2     = Hf_fun(x0) % evaluate Hessian 

 
Output: y1 = [[0, 0]] % value of gradient at x0 

 y2 = [[0, 1], 

      [1, 0]] 

% value of Hessian at x0 

 

Tool 2: autograd in Python 

Autograd3 is a Python package that can automatically differentiate native Python and Numpy 

code, the typical Python package for scientific computing. The main intended application of 

Autograd is gradient-based optimization. It can be installed via the package manager pip:  
>> pip install autograd 

1 import autograd.numpy as np # import numpy 

2 from autograd import jacobian # import jacobian for AD 

3 def f(x): # define the function  

4     return x[0]*x[1] – np.sin(x[1])   

5 gf_fun = jacobian(f) # calculate gradient expression 

6 Hf_fun = jacobian(gf_fun) # calculate Hessian expression 

7 x0     = np.array([1., 0.]) # define evaluation point 

8 print(gf_fun(x0)) # evaluate gradient 

9 print(Hf_fun(x0)) # evaluate Hessian 

 
Output: [0.,0.] # value of gradient at x0 

 [[0., 1.], 

 [1., 0.]] 

 

# value of Hessian at x0 

A very similar alternative developed from Autograd but also supporting, e.g., just-in-time 

compilation of gradients and functions is JAX4. 

                                                 
1 Andersson, A.E.A; Gillis, J.; Horn, G.; Rawlings, J.B. and Diehl, M.: CasADi – A software framework for 

nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), pp. 1-36, 
2019  

2 https://web.casadi.org/get/ 
3 https://github.com/HIPS/autograd 
4 https://github.com/google/jax 
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Minima of the Rosenbrock function 

 

A common model problem for optimization 

algorithms is the minimization of the Rosen-

brock function �(�) = 100(�2 2 �12)2 + (1 2 �1)2. 

For this function, many optimization algo-

rithms show convergence problems. This is 

due to the slight curvature of the <valley= 
and the very slowly decreasing <bottom of 
the valley=. 

 

a) Complete the gradient and the Hessian matrix for an arbitrary point �.
 

 ∇�(�) = [   
    __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __      __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __    ]   

 
 

        ∇2�(�) = [  
    __ __ __ __ __ __ __ __ __ __ __ __           __ __ __ __ __ __ __ __ __ __ __ __      __ __ __ __ __ __ __ __ __ __ __ __           __ __ __ __ __ __ __ __ __ __ __ __    ]  

 
 

 

b) Give the necessary condition of first order for minima. Compute from this a potential 

minimizer �⋆. 

 

 

 

 

 

 

c) Does �⋆ satisfy the necessary condition of second order? 
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Minimization of a Quadratic Function 
 

Minimize the quadratic function 

 �(�) = 10�12 + �22. 

 

Analytical Solution 

Using the gradient and the Hessian matrix, 

 ∇�(�) = [   
    __  __  __  __  __  __       __  __  __  __  __  __     ]   

 
,       ∇2�(�) = [  

    __  __  __  __       __  __  __  __      __  __  __  __       __  __  __  __    ]  
 
, 

we get the solution from the necessary conditions for a local minimizer, i.e. 

 

 2 2 2 2 2 2 2 2 2 2 ,      2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . 
Here, the solution �⋆ = 2 2 2 2  is also a global minimizer of the function. 

 

Newton – Method 

Starting from the initial point �(0) = [0.1 1]⊤ the search direction is 

 �(0) = 2(∇2�(0))−1 ∇�(0) = 2 [  
   __  __  __ __  __  __  __  __    __  __  __  __  __  __  __  __   ]  

 ∙ [   
  __  __  __  __  __  __  ]   

 = [   
  __  __  __  __  __  __  __  __  __  __  ]   

 
 . 

Along the corresponding line 

 �(�) = �(0) + ��(0) = [   
    __  __  __  __  __  __  __      __  __  __  __  __  __  __    ]   

 
,  

the criterion function is 

 �(�) = �(�(�)) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 . 
The minimum along this line follows from 

 �′ = 2 2 2 2 2 2 2 2 2 =! 0       ⟹        �(0) = 2 2 2 2  
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which yields the improved solution 

 �(1) = �(�(0)) = 2 2 2 2 2 

and so we got the minimizer in the first step. 

 

Conjugate Gradient Method 

Starting from the initial point �(0) = [0.1 1]⊤ we get the following iteration steps: 

 

 

� �(�) ∇�(�) exact line search 

 

 

0 [   
   __  __  __    __  __  __   ]   

 
 [   

   __  __  __    __  __  __   ]   
 
 �(0) = 2∇�(0) = [   

   __  __  __    __  __  __   ]   
 
 

 

�(�) = [   
   __  __  __  __  __  __  __     __  __  __  __  __  __  __     ]   

 
 

 �(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
 �′ = 2 2 2 2 2 2 2 2 2 =! 0    ⟹    �(0) = 2 2 2 

 

 

1 [   
   __  __  __    __  __  __   ]   

 
 [   

   __  __  __    __  __  __   ]   
 
 �(1) = 2∇�(1) + ‖∇�(1)‖2‖∇�(0)‖2 �(0) = [ ] 

 

�(�) = [ ] 
 �(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 

 �′ = 2 2 2 2 2 2 2 2 2 =! 0    ⟹    �(1) = 2 2 2 

 

2 [ 0  0 ]      convergence in two steps 
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Minimization of a Quadratic Function 
 

Minimize the quadratic function 

 �(�) = 10�12 + �22. 

 

Quasi – Newton Method 

Starting from the initial point  �(0) = [0.1 1]⊤  we get the following iteration steps: 

 � �(�) ∇�(�) exact line search 

 

 

0 [   
   __  __  __    __  __  __   ]   

 
 [   

   __  __  __    __  __  __   ]   
 
 ÿ(0) ∶= Ā = [  

   __  __  __  __  __  __    __  __  __  __  __  __   ]  
 
 

�(0) = 2ÿ(0) ∙ ∇�(0) = [   
   __  __  __    __  __  __   ]   

 
 

 

�(�) = [   
   __  __  __  __  __  __  __     __  __  __  __  __  __  __     ]   

 
 

 �(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
 �′ = 2 2 2 2 2 2 2 2 2 =! 0    ⟹    �(0) = 2 2 2 

 

 

1 [   
   __  __  __    __  __  __   ]   

 
 [   

   __  __  __    __  __  __   ]   
 
 δ� = �(1) 2 �(0) = 2 2 2 [   

   __  __  __    __  __  __   ]   
 
 

� = ∇�(1) 2 ∇�(0) = 2 2 2 [   
   __  __  __    __  __  __   ]   

 
 

δ� ∙ � = 2 2,   ÿ(0) ∙ � = 2 2,   � ∙ ÿ(0) ∙ � = 2 2 2 2  
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 � �(�) ∇�(�) exact line search 

 

 
  ÿ(1) = ÿ(0) + ����⊤

2 2 2 2 2 2 2 2 2 2 2 2 2 

ÿ(1) = 2 2 2 2 [  
   __  __  __ __  __  __  __  __    __  __  __  __  __  __  __  __   ]  

 
 

�(1) = 2ÿ(1) ∙ ∇�(1) = 2 2 2 [   
   __  __  __    __  __  __   ]   

 
 

�(�) = [   
   __  __  __  __  __  __  __     __  __  __  __  __  __  __     ]   

 
 

 �(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
 �′ = 2 2 2 2 2 2 2 2 2 =! 0    ⟹    �(1) = 2 2 2 

 

2 [ 0  0 ]       convergence in two steps 
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Constrained Minimization of a Quadratic Function 
 

Minimize the quadratic function 

 �(�) = �12 + �22 

subject to the constraint  

 2�1 2 �2 ≤ 24, 

or, written in standard form 

 ℎ1(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ≤ 0. 

 

Graphical Solution 
 

For this simple problem, the solution can be found graphically in the design parameter 

space. The dimension of the design parameter space is 2 2 2 2 2 2 2 2. 

 

Plot the contour lines of the function � and the constraint ℎ1 and mark the optimal  

solution �⋆
.    
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Analytical Solution 
 

The inequality constraint can be handled as an equality constraint by introducing the offset 

(slack) variable �1 

 ℎ1(�) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 0. 

The Lagrangian function for an optimization problem with constraints generally reads as  

          �(�, �, �) = �(�) 2 ∑��(ℎ� + ��2).�
�=1  

It follows that 

 �(�, �1, �1) = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  . 

 

The necessary condition of 1st order for a minimum is ∇�(�, �1, �1) =! 0 , which leads to the 

following four equations ���� = [   
    __  __  __  __  __  __  __  __  __  __  __  __  __  __       __  __  __  __  __  __  __  __  __  __  __  __  __  __     ]   

 =! [   
    __  __  __  __       __  __  __  __     ]   

 , 
����1 = __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __ =! __  __  __  __,           ����1 = __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __ =! __  __  __  __. 

 

From the last equation we can distinguish two cases, either 2 2 2 2 2 or 2 2 2 2 2 . 
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Case 1: 2 2 2 2 2 

If �1 = 0, the constraint is not considered and therefore inactive. This is only true if 

the constraint is fulfilled. It follows from  ∇�(�, �1, �1) =! 0 that 

 �1 = 2 2 2 2 2,  �2 = 2 2 2 2 2,  and   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2. 
 

 

This last equation cannot be satisfied and subsequently the constraint is not fulfilled 

at the minimum of � at  � = [ 2 2 2 2 2 2 ]⟙ and case 1 is not true. 

 

Case 2: 2 2 2 2 2 

If �1 = 0, the distance from the limit of the constraint is 0 and at �⋆ we have an ac-

tive constraint. 

The condition ∇�(�, �1, �1) =! 0 leaves us with three equations 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , 
 

and it follows that 

 �1 = 2 2 2 2 2,  �2 = 2 2 2 2 2,  �1 = 2 2 2 2 2. 
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Constrained Minimization of a Nonlinear Function 
 

Minimize the nonlinear objective function 

 ÿ(�) = (�13 + 10�2)2 2 100�1 
subject to the equality constraint  

 Ā(�) = �12 + �22 2 9 = 0. 
 

Solution by the Lagrange–Newton–Method 
 

The Lagrangian function for this optimization problem can be written as 

 

 �(�, �) = 2�__  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __ . 
  

The Karush-Kuhn-Tucker (KKT) conditions represent necessary conditions for an opti-

mum. They can be written as 

 ���� = [   
    __  __  __  __  __  __  __  __  __  __  __  __  __  __       __  __  __  __  __  __  __  __  __  __  __  __  __  __     ]   

 =! [   
    __  __  __  __       __  __  __  __     ]   

 , 
∂�∂� = __  __  __  __  __  __  __  __  __  __  __  __  __  __  __  __ =! __  __  __  __. 
 

 

These nonlinear equations can be solved by the Newton-Raphson method. This yields the 

update equation of the Lagrange-Newton method 

 

[  
   
   
   ∂2         ∂           __  __  __  __  __  __ (�Ā(�)�� )⏉__  __  __  __  __  __�Ā(�)�� __  __  __  __  __  __ 

  __  __  __  __  __  __  ]  
   
   
 

�(�), �(�)ÿ                            =�(�,�)
[  
   
 ��(�+1)__  __  __  __  __  _2�(�+1) __  __  __  __  __  _  ]  

   
 
 =  

[  
   
  2 �ÿ(�)��__  __  __  __  __  __2Ā(�) __  __  __  __  __  __  ]  

   
  

�(�)ÿ              =�(�)
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With the objective and constraint function given above, the matrix � and the right hand 

side � follows as 

 �(�, �) =
[  
   
   
 30�14 +                                     __  __  __  __  __  __  __  __  __  __ __  __  __  __  __  __  __  __200 2 2� __  __  __  __  __  __  __  __2�2__  __  __  __  __  __  __  __  __  __
 __  __  __  __  __  __  __  __  __  __

__  __  __  __  __  __  __  __
__  __  __  __  __  __  __  __

__  __  __  __  __  __  __  __0__  __  __  __  __  __  __  __    ]  
   
   
 
, 

 �(�) =
[  
   
   
 __  __  __  __  __  __  __  __  __  __  __  __220�13 2                                         __  __  __  __  __  __  __  __  __  __  __  __
 __  __  __  __  __  __  __  __  __  __  __  __  ]  

   
   
 
. 

 

Starting with �(0) = [ 1   0 ]⏉ and �(0) = 0 the update equation reads as 
 

 

[  
   
   
 30__  __  __  __  __  __  __60 __  __  __  __  __200 __  __  __  __  __ 
__  __  __  __  __  __  __
 __  __  __  __  __  __  __

__  __  __  __  __
__  __  __  __  __

__  __  __  __  __
__  __  __  __  __     ]  

   
   
 

[  
   
 ��(1)__  __  __  __2�(1) __  __  __  __  ]  

   
 
=
[  
   
   94__  __  __  __  __            __  __  __  __  __8 __  __  __  __  __  ]  

   
   
. 
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From these three scalar equations, the updated optimization variables and the new La-

grange multiplier estimate are given by 
 

 

 �(1) = �(0) + ��(1) = [ 2 2 2 2 2  2 2 2 2 2 ]⏉,   �(1) = 2 2 2 2 2 

 

The next iteration yields  
 

 

[  
   
   
 18022__  __  __  __  __  __  __1500 __  __  __  __  __ __  __  __  __  __ 
__  __  __  __  __  __  __
 __  __  __  __  __  __  __

__  __  __  __  __22.6__  __  __  __  __
__  __  __  __  __
__  __  __  __  __     ]  

   
   
 

[  
   
 ��(2)__  __  __  __2�(2) __  __  __  __  ]  

   
 
=
[  
   
   
 216700__  __  __  __  __22240            __  __  __  __  __217.69 __  __  __  __  __  ]  

   
   
 
, 

 

which results in  
 

 �(2) = [3.73482 0.63777]  and  �(2) = 2319.442. 

 

The following table summarizes the first 10 iterations of the Lagrange-Newton method: 
 

iteration �1 �2 � ÿ Ā 

0 1,0000E+00 0,0000E+00 0,0000E+00 -9,9000E+01 -8,0000E+00 

1 5,0000E+00 -1,3000E+00 -2,6000E+01 1,2044E+04 1,7690E+01 

2 3,7348E+00 6,3777E-01 -3,1944E+02 3,0458E+03 5,3556E+00 

3 3,1496E+00 -1,3357E-01 2,5548E+01 5,7946E+02 9,3751E-01 

4 2,8840E+00 -2,8855E+00 -1,1348E+02 -2,6471E+02 7,6436E+00 

5 2,5959E+00 -1,8490E+00 -3,4899E+01 -2,5859E+02 1,1574E+00 

6 2,5655E+00 -1,5787E+00 -1,0998E+01 -2,5534E+02 7,3970E-02 

7 2,5667E+00 -1,5533E+00 -8,8899E+00 -2,5478E+02 6,4691E-04 

8 2,5667E+00 -1,5531E+00 -8,8713E+00 -2,5477E+02 4,6864E-08 

9 2,5667E+00 -1,5531E+00 -8,8713E+00 -2,5477E+02 3,5527E-15 

10 2,5667E+00 -1,5531E+00 -8,8713E+00 -2,5477E+02 1,0011E-15 

 

Draw the points �(0) to �(4) and the final point �(10) in the contour plot on the next page. 
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Another solution process is started with the initial point �(0) = [21 0]⏉ and �(0) = 0. The 

following table summarizes the corresponding optimization history: 

 

iteration �1 �2 � ÿ Ā 

0 -1,0000E+00 0,0000E+00 0,0000E+00 1,0100E+02 -8,0000E+00 

1 -5,0000E+00 1,3000E+00 7,4000E+01 1,3044E+04 1,7690E+01 

2 -3,7693E+00 -7,7022E-01 -1,9290E+02 4,1289E+03 5,8005E+00 

3 -3,2153E+00 2,8425E-01 8,7719E+01 1,2455E+03 1,4188E+00 

4 -2,6628E+00 4,0384E+00 -3,0435E+02 7,2870E+02 1,4399E+01 

5 -2,3117E+00 2,4872E+00 -8,3576E+01 3,8788E+02 2,5296E+00 

6 -2,4700E+00 1,8314E+00 -8,2745E+00 2,5753E+02 4,5508E-01 

7 -2,4825E+00 1,6904E+00 8,1362E+00 2,5082E+02 2,0039E-02 

8 -2,4838E+00 1,6826E+00 8,9300E+00 2,5064E+02 6,3143E-05 

9 -2,4838E+00 1,6825E+00 8,9323E+00 2,5064E+02 4,5733E-10 

10 -2,4838E+00 1,6825E+00 8,9323E+00 2,5064E+02 -3,5527E-15 

 

Draw the points �(0) to �(4) and the final point �(10) of this run in the contour plot, too. 

 

Contour plot of the constrained problem: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see, the solution depends on the starting point �(0).  

Ā(�) = 0 
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Multicriteria Optimization of a Truss 

 
 

For the presented truss the cross sections �1 

and �2 of the two bars are to be designed. 

Simultaneously, the overall mass and the verti-

cal displacement of the point � shall be mini-

mized, while an external load þ is applied at �. 

 

This is a typical problem of multicriteria  

optimization since the overall mass corre-

sponds to the costs of material and the vertical 

displacement is a measure for the function of 

the framework. 

 

Using the density � the overall mass is 

 � = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

For the computation of the vertical displacement, the mass of the truss can be neglected in 

comparison to the external load. Using finite element modelling we get for the displace-

ment � of the joint           �� = þ   where   � = ý2√2ℓ [�2 �2�2 2√2�1 + �2] , � = [ÿĀ] , þ = [0þ] 
which yields the vertical displacement 

 Ā = 2 2 2 2 2 2. 

If � is a given minimal cross section of the bars, we get dimensionless design variables by 

normalization: 

 �1 ∶= 2 2 2 2 2 2 ,   �2 ∶= 2 2 2 2 2 2 

and the dimensionless optimization criteria 

          �1 ∶= ��ℓ� = 2 2 2 2 2 2 2 2 2 2,   �2 ∶= �þℓ ý�⁄ = 2 2 2 2 2 2 2 2. 

  

ℓ 
 

ă 

ℓ 
 

Ă ÿ Ā þ 

� 

2 1 
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If the possible cross section has a maximum of �� with � > 1, then we get the vector op-

timization problem 

 

           optý∈� [   
  __  __  __  __  __  __  __  __  __  __  __  __  __  __   ]   

 
 

                 where  � = {ý ∈ ℝ2| 2  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 }. 
Sketch the problem in the design space and in the criteria space for � = 4. 

 

 

  

�1 

�2 

1 � 

� 

1 

�(ý) � → ℱ 

�1 

�2 

1 � 

1 �⁄  

1 
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From these sketches we get the Edgeworth–Pareto optimal solutions 

 

 �P = {[ ] , 2 2 2 2 2 2 2 2 2 2 2 2 2}  

 

For the numerical determination of the EP–optimal solutions, we can formulate several 

scalar optimization problems. Formulate the following scalar optimization problems and 

determine the corresponding solution graphically. 

 

1) Weighted Criteria Method 
 (Weighting factors: ā1 = ā2 = 1 2⁄ ) 

                         miný∈� 2 2 2 2 2 2 2 2 

 

 

 
 

2) Distance Method 
 (Minimization of the Euklidean distance to the ideal solution 

 �0 = [2 2 2 2 2 2  2  2 2 2 2 2]⟙) 

  miný∈� 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 

� 1 

1 

�1 

�2 

 

ℱ 

ℱP 1 �⁄  
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3) Hierarchical Method 
 

If the minimal vertical displacement is more important than the minimal overall mass of 

the truss, then the priorities are  �1 = 2 2 2  and  �2 = 2 2 2 . 

 

In step 1, the minimization of the vertical displacement only leads to 

 �2 = miný∈�0 �2(ý) = 2 2 2 2 2 2    where    �0 = 2 2 2 2 

 

In step 2, we try to additionally minimize the overall mass. For this, we may allow some 

increase of the vertical displacement, e.g., �1 = 100%. The second optimization step 

then reads 

 �1 = miný∈�1 �1(ý)   where   �1 = {2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 } 
 

 

1 � 

1 �⁄  

1 

ℱ 

ℱ 

 
ℱP 

�1 

�2 

ℱP �1 

�2 

1 � 

1 �⁄  

1 
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Application: Optimization of a Double Pendulum 

 

An actively controlled double pendulum is 

described by the generalized coordinates 

 � = [ÿ Ā]⟙. 

Without the torque actuator �, the dynamic 

behavior is described by the nonlinear 

equations of motion 

 �(�, �)�� + �(�, �, �� ) = þ(�, �, �� ) 
and the initial conditions are 

 �(0) = �0,    �� (0) = �. 

Linearization of the equations of motion  

about the equilibrium position results in 

 �(�) = � + �(�),    �� (�) = � + �� (�),    �� (�) = � + �� (�) 
and the following system of linear equations 

 �(�)�� (�) + ÿ(�)�� (�) + Ā(�)�(�) = �(�), 
where 

 � = [ 2��2 ��2��2 ��2 ],   ÿ = [ 0 0 0 0 ],   Ā = [ 2�Ā� 00 �Ā� ]. 
The generalized force vector þ has to be considered with the control torque �(�) of the 

torque actuator 

 �(�) = [ �(�)0 ] 
and the PD–control law is 

 �(�) = 2�1ÿ 2 �2ÿ�  
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By an optimization process the control parameters �1 and �2 are to be optimized in such a 

way, that the vibrations of the pendulum, evaluated by the integral of ‖�‖2 = �⟙� within 

the first  10 s, are optimally damped. In order to ensure the stability of the system, both of 

the control parameters must not be negative. 

First we formulate the problem in standard form: 

 design variables     ý = [2 2 2 ʼ 2 2 2] 
 kinetics       2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 = 2 2 2 2 2 

 

 initial conditions  �0 = [   
  __  __  __  __  __  __  __ __  __  __  __  __  __  __  ]   

 = �,    �� 0 = [   
  __  __  __  __  __  __  __ __  __  __  __  __  __  __  ]   

 = �. 

 final condition �1 = 2 2 2 2 2 2 2 = 0 

 criteria functions �1 = 2 2 2 2 2 2 2 2 2 2 2 2 

  �2 = 2 2 2 2 2 2 2 2 2 2 2 2 

  �3 = 2 2 2 2 2 2 2 2 2 2 2 2 

 optimization criterion  ÿ = 2 2 2 2 2 2 2 

 inequality constraints ℎ1 = 2 2 2 2 2 2 2 

  ℎ2 = 2 2 2 2 2 2 2 

The constrained optimization task then reads as 

 find 2 2 2 2 2 , where 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 and 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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The described optimization task is solved by a SQP–method. The parameters of the dou-

ble pendulum are � = 1kg, � = 0.3m, �0 = [ 0.2  0.2 ], and the initial design variable vector is ý(0) = [ 5.0 5.0 ].  
The optimization algorithm needs 10 gradient evaluations and 16 function evaluations in 

order to find the optimizer 

 ý⋆ = [ 0.01.63]. 
The optimization history shows the convergence after 10 iterations: 

 

 
 

The optimal dynamic behaviour shows a significantly improved damping in comparison to 

the passive and the initial design: 

 

 

 


