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1.1 Motivation 

 

design optimization of mechanical systems 

 

 

classical/engineering approach 

 

 

mathematical/numerical approach 

intuition, experience of the design engi-

neer, experiments, and fiddling with hard-

ware prototypes at the end of the design 

process 

 

 

intuition, experience of the design engi-

neer, and virtual prototypes based on com-

puter simulations throughout the whole de-

sign process  

sequential process 

 

concurrent engineering 

 

• only small changes of the design possi-

ble to influence the system behavior  

• more fundamental changes might re-

quire the reconsideration of all previous 

design steps  

• “optimal” solution without quantitative 

objectives 

• hardware experiments are costly and 

time intensive (only few are possible)   

 

• provides many design degrees of free-

dom at beginning of the design process 

• parameter studies can be executed 

swiftly and easily  

• systematic way to find optimal solution 

with respect to defined criteria  

• cost efficient 

• shortening of the development time 

• initial design for hardware experiments 

is already close to optimum 

 

idea concept 

design 

calculation 

prototype 

experiments product 

idea 

concept 

CAD design 

simulation 

prototype 

experiments product 

optimization 

production preparation 
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Optimization beyond mechanical design  

 

The focus of this lecture is on optimization of mechanical systems using the mathemati-

cal/numerical approach, for which the formulation and the solution of mathematical opti-

mization problems are key issues. The concepts and methods are presented in a general 

manner so that they can be applied in any application domain. Apart from design, applica-

tions connected to mechanics include the control of actuated mechanical systems such as 

robots, and the inference of unknown parameters, e.g., in mechanical models. Popular ma-

chine learning methods also build upon optimization. Throughout all these applications, 

optimization can be seen as a formal, mathematical framework for informed decision mak-

ing. As such, optimization is also extensively used in many other disciplines, such as, e.g., 

process engineering, logistics, asset management, and economics. 

 

There are different ways to express the same design or decision-making problem as a math-

ematical optimization problem. However, the concrete formulation of the problem and its 

mathematical properties can have a decisive impact on the expected solution effort and 

the choice of appropriate optimization algorithms.  

 

 

 

The systematic formulation of an optimization problem requires answers to three 

basic questions: 

 

1. What should be achieved by the optimization?   

 

 

 

 

2. Which changeable variables can influence the optimization goals? 

 

 

 

 

3. Which restrictions apply? 
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1.3 Classification of Optimization Problems 

Optimization problems can be distinguished and classified in various ways, where the following clas-

sification makes sense from an application-oriented perspective, e.g., thinking of mechanical design 

optimization.  

Hence, optimization tasks in applications usually rely on the solution of (a series of) scalar optimiza-

tion problems. Perceiving unconstrained optimization as a special case of constrained optimization 

with 𝑃 = ℝn, this highlights the importance of constrained scalar optimization. However, the class of 

constrained scalar optimization problems contains problems of very different properties, heavily in-

fluencing which solution strategies are prudent and whether one can even expect to reliably obtain 

an optimal parameter vector with given solution time and effort. This motivates the following classi-

fication.  

 

Naturally, further systematic classifications are possible. For instance, this lecture focuses on con-

tinuous optimization where the feasible set 𝑃 is a connected subset of ℝn. In contrast, there are also 

discrete optimization problems where the optimization variable can only take integer values, e.g., 

the problem of determining the optimal gear to drive a car under given circumstances with maximum 

efficiency. Mixed-integer problems contain continuous as well as discrete optimization variables.  

topology function parameters 

scalar 
optimization 

multi-criteria 
optimization 

min
𝐩∈𝑃

𝐟ሺ𝐩ሻ 

unconstrained 
min
𝐩∈ℝn

𝑓ሺ𝐩ሻ 
constrained 

min
𝐩∈𝑃

𝑓ሺ𝐩ሻ 

 
𝑃 = ሼ𝐩 ∈ ℝn ȁ 𝐠ሺ𝐩ሻ = 𝟎, 𝐡ሺ𝐩ሻ ≤ 𝟎ሽ 

scalarization 

optimization 

min
𝐩∈𝑃

𝑓ሺ𝐩ሻ 

convex  
problems 

non-convex  
problems 

linear  
programs 

convex quadratic  
programs 

… 
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Optimization in Engineering Applications 

Static Analysis – Truss Framework 

A simple truss structure, shown to the right, shall be optimized. 
The truss consists of two round bars with Young’s modulus 𝐸 =
2,1 ∙ 1011 N m2⁄  and density 𝜌 = 2750 kg m3⁄ . As design variables 
the radii of the bars 𝑟1 and 𝑟2 are chosen 
 

𝒑 = [
𝑟1

𝑟2
] , whereby  2 mm ≤ 𝑟𝑖 ≤ 5mm,   𝑖 = 1,2. 

 
When applying a force 𝐹 = 100 N at point 𝐵 a displacement 𝒖 is 
caused, which can be computed using the finite element method 
 

𝑲𝒖 = 𝒒, 
 
with the stiffness matrix 
 

𝑲 =
𝐸

ℓ2√2
 [

𝐴2 𝐴12√2 + 𝐴2

𝐴2 𝐴2

] , 

 

the vector of nodal coordinates 𝒖 = [𝑢𝑥 𝑢𝑦]⟙ and the vector of applied forces 𝒒 = [0 𝐹]⟙. In an optimization 
the displacement 𝑢𝑦 shall be minimized. Thus, the scalar objective function reads 

 

𝜓(𝒑) = 𝑢𝑦 =
√2

2

𝐹ℓ

𝐸
(

4𝑟1
2 + √2𝑟2

2

𝜋𝑟1
2𝑟2

2 ). 

 
Evaluating 𝜓(𝒑) in the feasible design space returns the following results.

 
It can be seen that by increasing the radii, the displacement is reduced. Thus, if there are no additional con-
straint equations, such as mass restriction, the solution of the minimization problem is 𝑝1

∗ = 𝑝2
∗ = 5 mm and 

𝜓(𝒑∗) = 0.07 mm. 
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Dynamic Analysis – Slider-Crank Mechanism 

Not only static but also dynamic problems are analyzed and optimized in engineering. For instance, using 

the method of multibody systems the slider-crank mechanism shown below is modeled. The multibody sys-

tems consists of the crank (𝑚1 = 0.24kg, 𝐽1 = 0.26 kg m2), the piston rod (𝑚2 = 0.16kg, 𝐽2 = 0.0016 kg m2) as 

well as the slider block (𝑚3 = 0.46kg). The crank angle is assumed to rotate at constant angular velocity 𝜑̇ =

8 Hz and, thus, the motion of the mechanism is clearly defined. 

 

   
 

 

Performing a simulation for the time domain 𝑡 ∈ [0 3] s, the resulting reaction force between the crank and 

the inertial frame, which is defined as 

 

𝐹(𝑝, 𝑡) = √𝐹𝑥
2(𝑝, 𝑡) + 𝐹𝑦

2(𝑝, 𝑡), 

 

can be computed. For two different values 𝑝 = −0.02 m and 𝑝 = −0.03 m the resulting reaction forces 𝐹(𝑝, 𝑡) 

are displayed below. 

 

 
Performing an optimization, 𝐹(𝑝, 𝑡) shall be minimized. However, in contrast to static problems, first the tran-

sient system response has to be converted into a scalar value. Therefore, the time-dependent resulting reac-

tion force 𝐹(𝑝, 𝑡) is integrated over the simulation time 𝑡. Thus, it holds for the objective function 

 

𝜓(𝑝) = ∫ 𝐹(𝑝, 𝑡)𝑑𝑡

𝑡1

𝑡0

= ∫ √𝐹𝑥
2(𝑝, 𝑡) + 𝐹𝑦

2(𝑝, 𝑡)𝑑𝑡.

3𝑠

0
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Then, evaluating the objective function 𝜓(𝑝) for 𝑝 ∈ [−0.02 −0.01]⟙ m the local minimum can be deter-

mined as 𝑝⋆ ≈ −0.017 and 𝜓(𝑝⋆) ≈ 0.646. 

 

 
 
 
Dynamic Analysis – Planar 2-Arm Welding Robot 

A further example for the optimization of dynamic systems is the planar 2-arm welding robot shown below. 

For the welding process the tool center point (TCP) has to follow a semi-circular trajectory (—) within 3 sec-

ond. The joint angles 𝜑 and 𝜓 are modeled as rheonomic constraints, i.e., 𝜑 = 𝜑(𝑡) and 𝜓 = 𝜓(𝑡). However, 

due to joint elasticity, which is modeled by rotational springs with stiffness 𝑐, there are additional rotations of 

the two arms Δ𝜑 and Δ𝜓. These additional rotations represent the generalized degrees of freedom of the 

system 𝒚 = [Δ𝜑 Δ𝜓]⟙. As a consequence, the actual trajectory of the TCP (- - -) differs from the desired 

trajectory.  
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By varying the design variables p the center of gravity of the second arm is changed and, thereby, the track-

ing error of the TCP shall be reduced. The tracking error F is determined by the Euclidean distance between 

the actual position 𝒓a = [𝑥a 𝑦a]⟙ and the desired position 𝒓d = [𝑥d 𝑦d]⟙ and is computed as 

 

𝐹(𝑝, 𝒚, 𝑡) = √(𝑥a(𝑝, 𝒚, 𝑡) − 𝑥d(𝑡))
2

+ (𝑦𝒂(𝑝, 𝒚, 𝑡) − 𝑦d(𝑡))
2

. 

 

It can be seen, that not only the tracking error 𝐹 but also that the generalized degrees of freedom Δ𝜑 and Δ𝜓 

depend on the design variable 𝑝. 

 

 
To obtain a scalar objective function, the tracking error F is integrated over the simulation time 

 

𝜓(𝑝) = ∫ 𝐹(𝑝, 𝒚, 𝑡)𝑑𝑡

𝑡1

𝑡0

= ∫ √(𝑥𝑎(𝑝, 𝒚, 𝑡) − 𝑥𝑑(𝑡))
2

+ (𝑦𝑎(𝑝, 𝒚, 𝑡) − 𝑦𝑑(𝑡))
2

𝑑𝑡

3𝑠

0

. 

 

Evaluating the objective function for 𝑝 ∈ [−0.02 −0.01]⟙, a local minimum can be graphically determined at 

𝑝⋆ ≈ −0.04 and 𝜓(𝑝∗) ≈ 0.0039. 
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Geometric visualization in 2D 
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inequality constraints 

 

 

equality constraints 
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Matrix Algebra and Matrix Analysis 

 
 

vector     𝒙 ∈ ℝ𝑛 :  𝒙 = [𝑥1 … 𝑥𝑛]⊤ ,   𝑥𝑖 ∈ ℝ , 

 

matrix  𝑨 ∈ ℝ𝑚×𝑛 :  𝑨 = [

𝐴11 … 𝐴1𝑛
⋮ ⋮
𝐴𝑚1 … 𝐴𝑚𝑛

] ,  𝐴𝑖𝑗 ∈ ℝ . 

 

Basic Operations 

operation notation components mapping 

addition 𝑪 = 𝑨 + 𝑩 𝐶𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 ℝ𝑚×𝑛 ×ℝ𝑚×𝑛 → ℝ𝑚×𝑛 

multiplication 

with scalar 
𝑪 = 𝛼 𝑨   𝐶𝑖𝑗 = 𝛼 𝐴𝑖𝑗        ℝ × ℝ𝑚×𝑛 → ℝ𝑚×𝑛 

transpose 𝑪 = 𝑨⊤      𝐶𝑖𝑗 = 𝐴𝑗𝑖           ℝ𝑚×𝑛 → ℝ𝑛×𝑚 

differentiation 

𝑪 =
d

d𝑡
𝑨 

𝑪 =
𝜕𝒙

𝜕𝒚
    

𝐶𝑖𝑗 =
d

d𝑡
𝐴𝑖𝑗      

𝐶𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑦𝑗
         

ℝ𝑚×𝑛 → ℝ𝑚×𝑛 

ℝ𝑚 ×ℝ𝑛 → ℝ𝑚×𝑛 

matrix multiplication 
 𝒚 = 𝑨𝒙 

 𝑪 = 𝑨 𝑩 

𝑦𝑖 =∑𝐴𝑖𝑘
𝑘

𝑥𝑘 

𝐶𝑖𝑗 =∑𝐴𝑖𝑘
𝑘

𝐵𝑘𝑗 

ℝ𝑚×𝑛 ×ℝ𝑛 → ℝ𝑚 

ℝ𝑚×𝑛 ×ℝ𝑛×𝑝 → ℝ𝑚×𝑝 

scalar product 

(dot/inner product) 
α = 𝐱 ∙ 𝐲 𝛼 =∑𝑥𝑘

𝑘

𝑦𝑘 ℝ𝑛 ×ℝ𝑛 → ℝ 

outer product 𝑨 = 𝒙⊗ 𝒚 𝐴𝑖𝑗 = 𝑥𝑖  𝑦𝑗  ℝ𝑚 ×ℝ𝑛 → ℝ𝑚×𝑛 
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Basic Rules 

addition: 𝑨 + (𝑩 + 𝑪) = (𝑨 + 𝑩) + 𝑪 

 𝑨 + 𝑩 = 𝑩+ 𝑨 

 

multiplication with scalar: 𝛼(𝑨 𝑩) = (𝛼 𝑨) 𝑩 = 𝑨 (𝛼 𝑩) 

 𝛼(𝑨 + 𝑩) = 𝛼 𝑨 + 𝛼 𝑩 

 

transpose: (𝑨⊤)⊤ = 𝑨 

 (𝑨 + 𝑩)⊤ = 𝑨⊤ +𝑩⊤  

 (𝛼𝑨⊤)⊤ = 𝛼𝑨  

 (𝑨 𝑩)⊤ = 𝑩⊤ 𝑨⊤   

 

differentiation: 
d

d𝑡
(𝑨 + 𝑩) =

d

d𝑡
𝑨 +

d

d𝑡
𝑩 

 
d

d𝑡
(𝑨 𝑩) = (

d

d𝑡
𝑨)𝑩 + 𝑨(

d

d𝑡
𝑩) 

 
d

d𝑡
𝒇(𝒙) =

∂𝒇

∂𝒙

d𝒙

d𝑡
 

 

matrix multiplication: 𝑨 (𝑩 + 𝑪) = 𝑨 𝑩 + 𝑨 𝑪 

 𝑨 (𝑩 𝑪) = (𝑨 𝑩) 𝑪 

 𝑨 𝑩 ≠ 𝑩 𝑨   (in general) 

 

scalar product: 𝒙 ∙ 𝒚 = 𝒚 ∙ 𝒙 = 𝒙⊤𝒚 = 𝒚⊤𝒙 

 𝒙 ∙ 𝒚 ≥ 0   ∀ 𝒙,    𝒙 ∙ 𝒙 = 0 ⇔ 𝒙 = 0 

 𝒙 ∙ 𝒚 = 0 ⇔  𝒙, 𝒚  orthogonal 

 

 

Quadratic Matrices 

identity matrix 𝑰 = [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

] 

 

diagonal matrix 𝑫 = diag(𝐷1, …𝐷𝑛)  = [
𝐷1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐷𝑛

] 
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inverse matrix 𝑨−1𝑨 = 𝑨 𝑨−1 = 𝑰  

  (𝑨 𝑩)−1 = 𝑩−1 𝑨−1    

 

orthogonal matrix 𝑨−1 = 𝑨⊤ 

 

symmetric matrix 𝑨 = 𝑨⊤ 

 

skew symmetric matrix 𝑨 = −𝑨⊤  

 decomposition   

 𝑨 =
1

2
(𝑨 + 𝑨⊤)⏟      
𝑩=𝑩⊤

+
1

2
(𝑨 − 𝑨⊤)⏟      
𝑪=−𝑪⊤

  

 

 

skew symmetric 3 × 3 matrix 𝒂̃ = [

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

] 

 𝒂̃ 𝒃 = 𝒂 × 𝒃 

 𝒂̃ 𝒃 = −𝒃̃ 𝒂 

 𝒂̃ 𝒃̃ = 𝒃⊗ 𝒂− (𝒂 ∙ 𝒃)𝑰  

 (𝒂̃ 𝒃)̃ = 𝒃⊗ 𝒂− 𝒂⊗ 𝒃  

 

 

 

symmetric, positive definite matrix 𝑨: 𝒙⊤𝑨 𝒙 > 0    ∀  𝒙 ≠ 𝟎 

   eigenvalues 𝜆𝑘 > 0  ∀ 𝑘 ∈ {1,… , 𝑛} 

 

 

symmetric, positive semidefinite matrix 𝑨: 𝒙⊤𝑨 𝒙 ≥ 0    ∀  𝒙 

   eigenvalues 𝜆𝑘 ≥ 0  ∀ 𝑘 ∈ {1,… , 𝑛}   
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Notation 

𝑎 ∈ ℝ,  𝒃 ∈ ℝm,  𝑪 ∈ ℝm×n 

 matrix notation index notation 

1) derivative with 

respect to a 

scalar  

 𝑥 ∈ ℝ 

  

2) derivative with 

respect to a 

vector 

 𝒙 ∈ ℝn 

  

3) derivative of a 

scalar product 

 𝒃⊤𝒙 
  𝒙 ∈ ℝm 
  𝑏𝑖 = const 

 

 

 

4) derivative of a 

quadratic form 

 𝒙⊤𝑨𝒙 

 𝐀 = 𝐀⊤ ∈ ℝ𝑛×𝑛 

 𝐴𝑖𝑗 = const. 

 𝒙 ∈ ℝn 

  

 

 

 
𝜕𝑎

𝜕𝑥
 •   

𝜕

𝜕𝒙
൫𝒙⊤𝑨𝒙൯ =  2 𝑨𝒙 

 

•   

 

𝜕𝒃

𝜕𝑥
=

ۏ
ێ
ێ
ێ
ۍ
𝜕𝑏1
𝜕𝑥
⋮

𝜕𝑏𝑚
𝜕𝑥 ے
ۑ
ۑ
ۑ
ې

 •   

 

𝜕𝑪

𝜕𝑥
=

ۏ
ێ
ێ
ێ
ۍ
𝜕𝐶11
𝜕𝑥

…
𝜕𝐶1𝑛
𝜕𝑥

⋮ ⋱ ⋮
𝜕𝐶𝑚1
𝜕𝑥

…
𝜕𝐶𝑚𝑛
𝜕𝑥 ے

ۑ
ۑ
ۑ
ې

 •   

 

𝜕𝑎

𝜕𝒙
=

ۏ
ێ
ێ
ێ
ۍ
𝜕𝑎

𝜕𝑥1
⋮
𝜕𝑎

𝜕𝑥𝑛ے
ۑ
ۑ
ۑ
ې

 •   

 

𝜕𝒃

𝜕𝑥
=

ۏ
ێ
ێ
ێ
ۍ
𝜕𝑏1
𝜕𝑥1

…
𝜕𝑏1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑏𝑚
𝜕𝑥1

…
𝜕𝑏𝑚
𝜕𝑥𝑛 ے

ۑ
ۑ
ۑ
ې

 •   

𝜕

𝜕𝒙
൫𝒃⊤𝒙൯ =  𝒃 

 

•   

2   

𝜕

𝜕𝑥𝑗
(𝑏𝑖 𝑥𝑖) 

= 𝑏𝑖  
𝜕𝑥𝑖
𝜕𝑥𝑗
  

= 𝑏𝑖 𝛿𝑖𝑗 = 𝑏𝑗 

 

•   

𝜕

𝜕𝑥𝑗
(𝑥𝑚 𝐴𝑚𝑛 𝑥𝑛) 

= 2 𝐴𝑗𝑛𝑥𝑛 

 

•   

 
𝜕𝑎

𝜕𝑥
 •   

 
𝜕𝑏𝑖
𝜕𝑥

 •

 
𝜕𝐶𝑖𝑗

𝜕𝑥
 •

 
𝜕𝑎

𝜕𝑥𝑖
 •

 
𝜕𝑏𝑖
𝜕𝑥𝑗

 •
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Deterministic Optimization Strategies 
 

optimization 

strategy 

search direction 

 

model  

order 

information 

order 

search parallel 

to the axes 

𝒔(𝑣) = 𝒆𝑣 mod 𝑛   

gradient based 

method 

𝒔(𝑣) = −∇𝑓(𝑣)   

conjugate 

gradient 

method 

𝒔(0) = −∇𝑓(0) 

𝒔(𝑣+1) = −∇𝑓(𝑣+1) +
‖∇𝑓(𝑣+1)‖

2

‖∇𝑓(𝑣)‖2
𝒔(𝑣) 

  

Newton 

method 
𝒔(𝑣) = −(∇2𝑓(𝑣))

−1
∙ ∇𝑓(𝑣)   

 

Example: quadratic criteria function 

 

 
 

𝒑⋆ 

𝑝2 

𝑝1 

𝒑(0) 

∇𝑓(0) 
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Line Search 
 

  

 

 

 

 

 

 

 

possible requirements for line search 

 

• exact minimization: 

𝑓
′
(𝛼(𝑣)) = 𝒔(𝑣) ∙ ∇𝑓(𝑣+1) =

!
0  

many function evaluations → inefficient 

 

 

• sufficient improvement: 

in order to avoid infinitesimally small improvements, 

some conditions have been proposed, 

e.g., Wolfe-Powell conditions 

𝑓(𝛼) ≤
!

𝑓(0) + 𝛼𝜌𝑓
′
(0),  𝜌 ∈ (0,1), e.g., 𝜌 = 0.01 

𝑓
′
(𝛼) ≥

!
𝜎𝑓

′
(0),   𝜎 ∈ (𝜌, 1), e.g., 𝜎 = 0.1 

𝑝2 

𝑝1 

𝑓 

𝛼 
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Karush-Kuhn-Tucker Conditions 

If 𝒑⋆ is a regular point and a local minimizer of the optimization problem  

 

min
𝒑∈𝑃

𝑓(𝒑)      with     𝑃 = {𝒑 ∈ ℝ𝑛 | 𝒈(𝒑) = 𝟎, 𝒉(𝒑) ≤ 𝟎, 𝒈: ℝ𝑛 → ℝℓ, 𝒉: ℝ𝑛 → ℝ𝑚} , 

 

then Lagrange multipliers 𝝀⋆ and 𝝁⋆ exist, for which 𝒑⋆, 𝝀⋆, 𝝁⋆ fulfill the conditions 

 

(∇𝑓 − ∑ 𝜆𝑖 (
𝜕𝑔𝑖

𝜕𝒑
)

⊤

− ∑ 𝜇𝑗 (
𝜕ℎ𝑗

𝜕𝒑
)

⊤𝑚

𝑗=1

ℓ

𝑖=1

)|

𝒑⋆,𝝀⋆,𝝁⋆

= 𝟎, 

 𝒈(𝒑⋆) = 𝟎, 

 𝒉(𝒑⋆) ≤ 𝟎, 

 𝝁⋆ ≤ 𝟎, 

 𝜇𝑗
⋆ℎ𝑗(𝒑⋆) = 0,    j ∈ {1, … , m}. 

 

 

If we introduce the Lagrangian function 

  

𝐿(𝒑, 𝝀, 𝝁) ≔ 𝑓(𝒑) − ∑ 𝜆𝑖𝑔𝑖(𝒑)ℓ
𝑖=1 − ∑ 𝜇𝑗ℎ𝑗(𝒑)𝑚

𝑗=1 , 

 

we can write the Karush-Kuhn-Tucker conditions as 

 

 (
𝜕𝐿

𝜕𝒑
|

𝒑⋆,𝝀⋆,𝝁⋆
)

⊤

= 𝟎 , (
𝜕𝐿

𝜕𝝀
|

𝒑⋆,𝝀⋆,𝝁⋆
)

⊤

= 𝟎 , (
𝜕𝐿

𝜕𝝁
|

𝒑⋆,𝝀⋆,𝝁⋆
)

⊤

≥ 𝟎 , 

 𝝁⋆ ≤ 𝟎 , 𝜇𝑗
⋆ℎ𝑗(𝒑⋆) = 𝟎 , 𝑗 ∈ {1, … , 𝑚} . 
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Lagrange-Newton-Method / 

Sequential Quadratic Programming (SQP) 
= Recursive Quadratic Programming (RQP) 

= Variable Metric Method 

 

 
Simplifying assumption: Only equality constraints, i.e., 

 
min
𝒑∈𝑃

𝑓(𝒑)      with      𝑃 = {𝒑 ∈ ℝ𝑛 | 𝒈(𝒑) = 𝟎}, 

 
with the corresponding Karush-Kuhn-Tucker conditions reading 

 

𝒂(𝒑⋆, 𝝀⋆) ≔

[
 
 
 
 (

𝜕𝐿

𝜕𝒑
)
⊤

(
𝜕𝐿

𝜕𝝀
)
⊤

]
 
 
 
 

= [
∇𝑓(𝒑⋆) − ∑ ∇𝑔𝑖(𝒑

⋆)𝜆𝑖
⋆

𝑖

𝒈(𝒑⋆)
] = [

𝟎
𝟎
]. 
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[
 
 
 
 ∇2𝑓 − ∑ ∇2𝑔𝑖𝜆𝑖

𝑖
−(

𝜕𝒈

𝜕𝒑
)
⊤

𝜕𝒈

𝜕𝒑
𝟎

]
 
 
 
 
(𝜈)

[
𝒑(𝜈+1) − 𝒑(𝜈)

𝝀(𝜈+1) − 𝝀(𝜈)
] = − [∇𝑓 − (

𝜕𝒈

𝜕𝒑
)
⊤

𝝀

𝒈

]

(𝜈)

 

 

 

 

 

 

[
 
 
 
 𝑾(𝜈) −(

𝜕𝒈(𝜈)

𝜕𝒑
)

⊤

𝜕𝒈(𝜈)

𝜕𝒑
𝟎

]
 
 
 
 

[
δ𝒑(𝜈+1)

𝝀(𝜈+1)
] = − [

∇𝑓(𝜈)

𝒈(𝜈)
] 
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In the case that the performance function and constraint equations are general nonlinear 

functions, the parameter variation δ𝒑 is not necessarily the best possible parameter variation 

for the original optimization problem. In order to achieve a higher flexibility, the method can 

be combined with a line search, i.e., δ𝒑 = 𝛼𝒔, 

 

 

 

 

 

[
 
 
 
 𝑾(𝜈) −(

𝜕𝒈(𝜈)

𝜕𝒑
)

⊤

𝜕𝒈(𝜈)

𝜕𝒑
𝟎

]
 
 
 
 

[
𝒔
𝝀
] = − [

∇𝑓(𝜈)

𝒈(𝜈)
], 

 

which corresponds to 

min
𝒔∈𝑆

1

2
𝒔⊤𝑾(𝜈)𝒔 + (∇𝑓(𝜈))

⊤
𝒔        with       𝑆 = {𝒔 ∈ ℝ𝑛|

𝜕𝒈
𝜕𝒑

𝒔 + 𝒈 = 𝟎}. 
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Simulated Annealing 
 

 

basic algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acceptance function                                      cooling velocity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

initialization 
𝑇0, 𝒑0 

𝒑 = 𝒑opt = 𝒑0 

𝑓opt = 𝑓(𝒑0) 

generate new point 
𝑔(𝒑, 𝑇) → 𝒑̅ 

computation of cost 
𝑓(𝒑̅) 

constraints 
ok? 

yes 

no 

𝑓(𝒑̅) < 𝑓opt 

 yes no 

𝒑opt = 𝒑̅ 

𝑓opt = 𝑓(𝒑̅) 

accepted? 
𝑎(Δ𝑓(𝒑̅), 𝑇) 

yes no 

𝒑 = 𝒑̅ 
𝑓 = 𝑓(𝒑̅) 

new temperature 𝑇 

finished? 

result 

𝒑opt, 𝑓opt 

no 

yes 

Δ𝑓 

n = 9 

n = 6 

n = 3 

n = 2 

n = 1 
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generation probability 
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Particle Swarm Optimization 

simulation of social behavior of bird flock (introduced by Kennedy & Eberhart in 1995) 
 

 

recursive update equation             algorithm 

 

𝒑𝑖
𝑘   position of particle 𝑖 at time 𝑘 

∆𝒑𝑖
𝑘   velocity of particle 𝑖 at time 𝑘 

𝑟1, 𝑟2 ∈ 𝑈[0,1] evenly distributed numbers 

𝑤,  𝑐1,  𝑐2  control parameters 

 

 

𝒑𝑖
𝑘+1 = 𝒑𝑖

𝑘 + ∆𝒑𝑖
𝑘+1 

 

∆𝒑𝑖
𝑘+1 = 𝑤∆𝒑𝑖

𝑘 + 𝑐1𝑟1,𝑖
𝑘 ൫𝒑𝑖

best,𝑘 − 𝒑𝑖
𝑘൯ + 𝑐2𝑟2,𝑖

𝑘 ൫𝒑swarm
best,𝑘 − 𝒑𝑖

𝑘൯ 

 
tradition/ 
inertia 

learning social behavior 

initialization 

recursive update equation 

find best particle and 

best solution 𝒑swarm
best,𝑘

 

terminate? 

 𝒑swarm
best,𝑘

 

yes no 

𝒑swarm
best,𝑘  

𝒑𝑖
𝑘 

 

𝒑𝑖
best,𝑘 

 

∆𝒑𝑖
𝑘+1 
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Principles of Reduction in Multicriteria Optimization 
 

 

 


