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Extracted from Doctoral Thesis Jörg Fehr [1].

Gramian Matrix Based Model Reduction

For first order systems the well known balanced truncation as explained e.g. in [2, 3] has a-priori error
bounds [4] and asymptotic stability is preserved in the reduced order system. This combination of facts
makes the method very attractive for automated and error controlled model reduction. For first order
systems various balancing reduction methods exist, e.g. Lyapunov balancing or frequency weighted
balancing. For model reduction based on frequency weighted Gramian matrices a frequency domain
representation is beneficial. In [5] it is proven that if the matrix Â is Hurwitz and asymptotically
stable, the Gramian matrices P and Q can be expressed by an integral expression in the frequency
domain as

P =
1

2π

∫ ∞
−∞

(iωI − Â)−1 · B̂ · B̂T · (−iωI − ÂT
)−1dω, (1)

Q =
1

2π

∫ ∞
−∞

(−iωI − ÂT
)−1 · ĈT · Ĉ · (iωI − Â)−1dω. (2)

For model reduction issues an equivalent transformation into a balanced form is not necessary. It
is adequate to retain only those states in the projection subspace span(V f ) which coincide with the
biggest 2n HSV. The error of the reduced order system

HE(s) = H(s)− H̄(s) (3)

is then bounded by twice the sum of neglected HSVs

‖HE‖H∞ ≤ 2
2N∑

i=2n+1

σi. (4)

A proof of the error bound is e.g. given in [3].

In the following, the balancing model reduction of second order systems is the center of attention. In
this context, second order Gramian matrices are very important as far as model reduction of second
order systems is concerned. However, contrary to first order systems, more than two Gramian matrices
exist for a second order system.

A universally applicable error bound for all second order balancing reduction methods is not available.
In addition, as explained in [6], even the stability of the reduced system cannot be guaranteed.

For the low rank ADI based algorithms the calculation of frequency weighted second order Gramian
matrices is still an open topic. That is why here two other methods are used based on a two-step
approach, introduced in [7]. In this case, the large scale model is reduced to a medium scale model in
a first step, e.g. with an automated Krylov-subspace based model reduction technique. Subsequently,
the Gramian matrices of the medium scale model can be calculated by an analytic solution of the
model diagonalized with a congruence transformation. The other method is based on the fact that
the matrix integral needed for calculating the Gramian matrices can be approximated by quadratures
using integral kernel snapshots in combination with a POD based reduction. This method can be
viewed as an extension of the Poor Man’s Truncated Balanced Reduction (TBR) [8] scheme for second
order systems.
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Gramian Matrices for Second Order Systems

The Gramian matrices P and Q can be used to identify the most controllable and observable states
of the linear time invariant first order state space system, compare [3, 2]. They measure how much
energy is needed to control a state respectively how much energy is observable for a certain state.
According to [9], second order Gramian matrices identify the important positions and velocities in the
input / output (I/O) map of a second order system. For second order systems more than two Gramian
matrices exist, see e.g. [6, 9]. The first order Gramian matrices of size 2N × 2N are partitioned into

P =

[
P p ∗
∗ P v

]
, Q =

[
Qp ∗
∗ Qv

]
, (5)

where all blocks have the size N × N and only the diagonal elements are important to identify the
most important positions and velocities, compare e.g. [6]. The position controllability Gramian matrix
P p identifies the most easily controllable positions and the position observability Gramian matrix Qp

defines the most easily observable positions. However, the velocity controllability Gramian matrix P v

and the velocity observability Gramian matrix Qv tell how the I/O energy is distributed among the
velocities.

In literature, different types of model reduction techniques based on second order Gramian matrices are
proposed [9, 6, 10, 11]. Current research focuses on the question which one of the different reduction
techniques is the most appropriate for model reduction of second order mechanical systems. They differ
depending on which eigenvalues of the four system invariants are balanced simultaneously. Therefore,
four different reduction methods are introduced and later compared. However, the implementation of
these methods is a first try and further research is necessary to examine which are the most appropriate
methods for different second order models. System invariants of a second order system are, as described
in [6],

the position singular values σp =
√
λ(P p ·Qp), (6)

the velocity singular values σv =

√
λ(P v ·MT

e ·Qv ·M e), (7)

the position velocity singular values σpv =

√
λ(P p ·MT

e ·Qv ·M e), (8)

the velocity position singular values σvp =
√
λ(P v ·Qp), (9)

and are the square roots of the eigenvalues of the corresponding matrix. Additionally, the velocity
singular values σv and the position velocity singular σpv values can be calculated by using the position
velocity Gramian matrix Qpv. Therefore, Equations (7) and (8) are each expanded with two identity

matrices I = MT
e ·M−T

e = M−1
e ·M e before and after the velocity observability matrix Qv

σv =
√
λ(P v ·MT

e ·MT
e ·M−T

e︸ ︷︷ ︸
I

·Qv ·M−1
e ·M e︸ ︷︷ ︸
I

·M e)

=
√
λ(P v ·MT

e ·MT
e ·Qpv ·M e ·M e),

(10)

σpv =
√
λ(P p ·MT

e ·MT
e ·M−T

e︸ ︷︷ ︸
I

·Qv ·M−1
e ·M e︸ ︷︷ ︸
I

·M e)

=
√
λ(P p ·MT

e ·MT
e ·Qpv ·M e ·M e)

(11)

and are now expressed with Qpv. Based on the different singular values, different balanced realizations
for second order systems can be defined. Here, the definitions from [6] are modified by using the
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position controllability Gramian matrix of the dual system Qpv instead of the velocity observability
Gramian matrix Qv because for reduction with Qpv in [11] an error estimator is available and in
previous work reductions based on Qpv achieved excellent results.

Frequency Weighted Gramian Matrices for Second Order Systems

Often, when examining mechanical systems, certain frequency ranges are of special interest. Frequency
weighted balanced truncation for first order systems was introduced by [4] and an improved version
is given, e.g., by [12]. Frequency ranges are emphasized by applying suitable frequency filters. The
input is filtered by W i(s) whereas the output is filtered by W o(s). Such frequency weighted Gramian
matrices tell what are the important states in a certain frequency range. In general terms, the frequency
share of the excitations outside the interesting frequency range is removed by the input filter and the
frequency share of the outputs outside the frequency range are also removed. Frequency weighted
Gramian matrices are calculated by substituting the input to state map L−1(s) ·Be with a suitable
weighted variant of the map L−1(s) ·Be ·W i(s) and additionally weight the output Ce with W o(s).
The frequency weighted version of the second order Gramian matrices are then obtained. They read

P i
p =

1

2π

∫ ∞
−∞

L−1(iω) · (Be) ·W i(iω) ·WH
i (iω) · (BT

e ) ·L−H(iω)dω, (12)

P i
v =

1

2π

∫ ∞
−∞

L−1(iω) · (iωBe) ·W i(iω) ·WH
i (iω) · (−iωBT

e ) ·L−H(iω)dω, (13)

Qi
p =

1

2π

∫ ∞
−∞

(−iωMT
e +DT

e ) ·L−H(iω) ·CT
e ·WH

o (iω)

·W o(iω) ·Ce ·L−1(iω) · (iωM e +De)dω,

(14)

Qi
v =

1

2π

∫ ∞
−∞

MT
e ·L−H(iω) ·CT

e ·WH
o (iω) ·W o(iω) ·Ce ·L−1(iω) ·M−1

e dω, (15)

Qi
pv =

1

2π

∫ ∞
−∞

L−H(iω) ·CT
e ·WH

o (iω) ·W o(iω) ·Ce ·L−1(iω)dω, (16)

where LH and WH are the conjugated transposes of the complex matrices L and W . For mechanical
systems, the filter matrices are often not available directly but the interesting frequency range is known.
In this case, the input and output filter matrices W i(s) and W o(s) are the transfer functions of ideal
band pass filters, see [3]. The frequency weighted version of the second order position controllability
Gramian matrix then reads

P i
p =

1

2π

−ω1∫
−ω2

L−1(iω) ·Be ·BT
e ·L−H(iω)dω +

1

2π

ω2∫
ω1

L−1(iω) ·Be ·BT
e ·L−H(iω)dω. (17)

The integration variable in the first summand is substituted by ω̄ = −ω and afterwards the integration
boundaries are switched

P i
p =

1

2π

ω1∫
ω2

L−1(iω̄) ·Be ·BT
e ·L−H(iω̄)(−1)dω̄ +

1

2π

ω2∫
ω1

L−1(iω) ·Be ·BT
e ·L−H(iω)dω

=
1

2π

ω2∫
ω1

L−1(iω̄) ·Be ·BT
e ·L−H(iω̄)dω̄ +

1

2π

ω2∫
ω1

L−1(iω) ·Be ·BT
e ·L−H(iω)dω. (18)
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Another representation of the Gramian matrices weighted with ideal band pass filters is

P i
p(ω1, ω2) = P i

p(ω2)− P i
p(ω1), P i

v(ω1, ω2) = P i
v(ω2)− P i

v(ω1),

Qi
p(ω1, ω2) = Qi

p(ω2)−Qi
p(ω1), Qi

v(ω1, ω2) = Qi
v(ω2)−Qi

v(ω1),

Qi
pv(ω1, ω2) = Qi

pv(ω2)−Qi
pv(ω1),

(19)

with

P i
p(ω1) =

1

2π

∫ ω1

−ω1

L−1(iω) ·Be ·BT
e ·L−H(iω)dω, (20)

P i
v(ω1) =

1

2π

∫ ω1

−ω1

L−1(iω) · (iωBe) · (−iωBT
e ) ·L−H(iω)dω, (21)

Qi
p(ω1) =

1

2π

∫ ω1

−ω1

(−iωMT
e +DT

e ) ·L−H(iω) ·CT
e ·Ce ·L−1(iω) · (iωM e +De)dω, (22)

Qi
v(ω1) =

1

2π

∫ ω1

−ω1

MT
e ·L−H(iω) ·CT

e ·Ce ·L−1(iω) ·M−1
e dω, (23)

Qi
pv(ω1) =

1

2π

∫ ω1

−ω1

L−H(−iω) ·CT
e ·Ce ·L−1(−iω)dω. (24)

The decisive advantage of the usage of frequency weighted Gramian matrices can be seen in Figures 1
and 2. Two models are compared. One model is reduced with the n = 24 dominant eigenvectors of the
Gramian position matrix P p, the other one is reduced with the n = 24 dominant eigenvectors of the
frequency weighted Gramian matrix P i

p, where the interesting frequency range [fmin, fmax] = [1, 20 Hz]

was chosen optimally with respect to the later harmonic excitation F rack
harm. Furthermore, the results

of the two models are compared with the translation of the nonlinear finite element model. The
accuracy of the reduced model which was optimized with a frequency weighted Gramian matrix is
very good. The model is optimized for this excitation frequency. On the contrary, the reduction
with an unweighted Gramian matrix P p leads to wrong results. Based on the convincing results
derived from the usage of frequency weighted Gramian matrices, in the following the model reduction
procedures exclusively use frequency weighted Gramian matrices P i

α and Qi
β instead of unweighted

Gramian matrices P α and Qα with α ∈ {p, v} and β ∈ {p, pv}.

Figure 1: Influence of frequency weighting on the

relative error εrelF of the rack reduced
to the same reduction size n = 24.

Figure 2: Influence of frequency weighting on the
time response of the harmonically ex-
cited rack
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