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Extracted from Doctoral Thesis Jörg Fehr [1].

Model Reduction of Second Order MIMO Systems

The first order state space descriptor system M04 Eq. (5) is reduced with a Petrov-Galerkin ansatz
x(t) ≈ V f · x̄(t)

E · V f · ˙̄x(t) = A · V f · x̄(t) + Bf · u(t) + εf (t)

ȳ(t) = Cf · V f · x̄(t)
(1)

and requiring the residual εf (t) projected along the subspace W f onto the subspace V f to be zero,
compare e.g. [2]. The reduced system then reads

W T
f ·E · V f︸ ︷︷ ︸

Ē

· ˙̄x(t) = W T
f ·A · V f︸ ︷︷ ︸

Ā

·x̄(t) + W T
f ·B︸ ︷︷ ︸
B̄

·u(t) + W T
f · εf (t)︸ ︷︷ ︸
0

ȳ(t) = Cf · V f︸ ︷︷ ︸
C̄f

·x̄(t)
(2)

and the transfer matrix of the first order reduced system is H̄f (s) = C̄f · (sĒ − Ā)−1 · B̄f .
The second order MIMO system M 4 Eq. (2) with the original dimension N is also reduced by a
Petrov-Galerkin projection of the elastic coordinates q, visualized in Figure 1, on to the subspace
span(V ) ∈ RN×n by q ≈ V · q̄

M e · V · ¨̄q(t) + De · V · ˙̄q(t) + Ke · V · q̄(t) = Be · u(t) + ε(t),

ȳ(t) = Ce · V · q̄(t)
(3)

and requiring the residual ε(t) projected by the subspace W onto the subspace V to be zero. The
reduced system of size n then reads

M̄ e · ¨̄q(t) + D̄e · ˙̄q(t) + K̄e · q̄(t) = B̄e · u(t),

ȳ(t) = C̄e · q̄(t).
(4)

The projection spaces span(V ) and span(W ) which reduces the full elastic body M 3 Eq. (12) to its
reduced form, compare Equation (5), are then the same projection spaces which reduce the second

Figure 1: Model reduction of a second order MIMO system via Petrov-Galerkin projection
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order MIMO-system mI m˜̄cT (q̄) vC̄
T
t · V

m˜̄c J̄(q̄) vC̄
T
r (q̄) · V

W T · wC̄t(q̄) W T · wC̄r(q̄) W T ·M e · V

 ·
v̇IR

ω̇IR

¨̄q

 = −h̄e − h̄ω + h̄g + h̄P + h̄d (5)

with the reduced forces h̄e, h̄ω, h̄g, h̄P , h̄d, the inertia tensor J̄ and the center of gravity c̄ of the
reduced elastic body, which are calculated from the mass invariants if the left elastic projection operator
now only spans the motion of the reduced elastic motion spaces Sel = TBC · V and Srl = TBC ·W .
In addition, it is distinguished between vC̄t/

vC̄r and wC̄t/
wC̄r due to the non-orthogonal projection.

Importance of Second Order Model Reduction

Most of the state space reduction methods were initially developed for first order systems. However,
the underlying equation of motion of a flexible multibody system is always a second order differential
equation. One simple reduction method for such a class of second order systems is, to utilize the
conventional first order model reduction techniques [3, 4]. However, due to the embedding into the
problem of double size, the condition number, i.e. the sensitivity of the eigenvalues and eigenvectors
with respect to perturbations in the data matrices may increase, compare [5]. Here the attention is
turned to model reduction techniques for second order systems. After [5] they are equipped with the
following desirable features:

• The algorithms work directly with the original system data avoiding the problem of increased
condition numbers.

• The algorithms preserve the sparsity structure inherited from the original second order system.

• They avoid the loss of physical insight of the original system.

• The efficiency and the reliability of reduction techniques are improved.

In addition, in multibody system tools like Adams, Simpack or Neweul-M2, the reduced elastic body (5)
must be described as a second order system for the simulations and the preservation of the second
order structure is mandatory.

3.3.1 Error Induced by Projection

It is desirable to have an approximation error as small as possible between the original system and
the reduced system. This error needs to be measured adequately. First, a general definition of the
error between the original and the reduced system is given. This error system is used to visualize the
error in the frequency domain.

Error Measures for Second Order System

For a second order MIMO system, the error in the time domain in the position states is defined as

e(t) = q(t)− V · q̄(t). (6)
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The Laplace transform is used to transform Equation (6) into the complex s-domain

E(s) = Q(s)− V · Q̄(s), (7)

with zero initial condition e(0) = 0, compare [6]. The position and the reduced position vector are
rephrased as Q(s) = (s2M e + sDe + Ke)

−1 ·Be ·U and Q̄(s) = (s2M̄ e + sD̄e + K̄e)
−1 · B̄e ·U(s).

This leads to

E(s) = (s2M e + sDe + Ke)
−1 ·Be ·U(s)− V ·

(
(s2M̄ e + sD̄e + K̄e)

−1 · B̄e ·U(s)
)
. (8)

In a next step the error is expressed in terms of the residuum. The Laplace transform Er(s) of the
residuum ε(t) obtained by reduction on subspace span(V ) can be written as

Er(s) = (s2M e + sDe + Ke) ·E(s), (9)

and can be written with Equation (8) as:

Er(s) = (s2M e + sDe + Ke) · (s2M e + sDe + Ke)
−1 ·Be ·U(s)

− (s2M e + sDe + Ke) · V ·
(
(s2M̄ e + sD̄e + K̄e)

−1 · B̄e ·U(s)
)

= Be ·U − (s2M e + sDe + Ke) · V
(
(s2M̄ e + sD̄e + K̄e)

−1 · B̄e ·U(s)
)
.

(10)

Usually only a good input to output mapping is desired, which leads to the definition of the output
error for the second order system eO(t) = Ce · e(t) = y(t) − ȳ(t) which is defined in the complex
s-domain as:

EO(s) = Y (s)− Ȳ (s) = Ce ·Q(s)− C̄e · Q̄(s)

= Ce ·
(
Q(s)− V · Q̄(s)

)
= Ce ·E(s).

(11)

Error System

The output error Equation (11) which needs to be minimized for good reduction results can also be
written in terms of the error system

HE(s) = H(s)− H̄(s). (12)

Inserting Y (s) = H(s) ·U(s) and Ȳ = H̄(s) ·U(s) into Equation (11) the output error reads

EO(s) = H(s) ·U(s)− H̄(s) ·U(s) = HE(s) ·U(s), (13)

where for both the reduced and the original system a zero initial condition is considered.
As explained in [4, 7] the Lp norms of the error system HE(s) are natural performance metrics. The
most common induced norms are the L2 and L∞ norms. After [6] all proper rational transfer functions
that are analytical and bounded in the closed right half plane are part of the Hardy space H∞. The
H∞-norm (norm corresponding to the Hardy space H∞) is the induced L2 norm of a system and is
defined as

‖H‖H∞ = sup
u6=0

‖H · u‖Lr2(iR)
‖u‖Lp2(iR)

= sup
ω∈R
‖H(iω)‖2. (14)

The error is measured in the H∞-norm because this norm allows an error interpretation in the fre-
quency domain as well as in the time domain, see [4, 6]. Due to the Parseval identity the H∞-norm
can also be written as

‖H‖i,2 = ‖H‖H∞ = sup
u6=0

‖y‖Lr2(R)
‖u‖Lp2(R)

. (15)
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Figure 2: Input/Output Ellipsoid

Conceptually the second order system H can be thought of as mapping a unit input Lp2-ball to an
output ellipsoid in Lr2 as shown in Figure 2. The worst case input/output L2 gain is the H∞-norm
of the system and is the length of the major axis of the output ellipsoid. Then the H∞-norm of the
error system describes the worst case error between the original and the reduced system for all inputs
with a unit input gain.
Another widely used norm in model reduction is the H2-norm of a system. For example in [8, 9] H2

optimal model reduction techniques are discussed. The H2-norm of a system is the corresponding
Lp×r2 (−iω, iω) norm of the frequency response matrix H(iω), which can also be written as

‖H‖H2 =

(
1

2π

∫ ∞
−∞

trace(HH(−iω) ·H(iω))dω

) 1
2

=

(
1

2π

∫ ∞
−∞
‖H(iω)‖2Fdω

) 1
2

, (16)

where

‖H(iω)‖F =

√
trace(H(iω) ·HH(iω)) (17)

is the sub multiplicative Frobenius-norm of the complex matrix H, see [4, 10]. In [7, 4] the time
domain interpretation of the H2-norm is given as

‖H‖H2 =

(∫ t2

t1

trace[hH(t) · h(t)] dt

) 1
2

, (18)

where h(t) is the impulse response of the dynamical system H. A small H2-norm of the error system
‖He‖H2 means that the L2 norm of the difference between the output of the reduced order system and
the original system if both are excited with the impulse response or, equivalently, between the transfer
functions is small. There is no direct relation to time domain error bounds, however as explained in
[7] a small H2-norm means that under unit Gaussian white noise input with unit spectral density, the
power of the output is small.

Frequently, in mechanical systems a certain frequency range is of special interest. In order to evaluate
a dynamical system only in a certain frequency range, the weighted Hi

∞-norm and Hi
2-norm

‖W o ·H ·W i‖Hi
∞

‖W o ·H ·W i‖Hi
2

(19)

of the dynamical system H with the still to be defined frequency weighting matrices W i(s) and
W o(s) are introduced. If the weighting matrices are ideal band pass filters in the frequency range
[fmin = 2πωmin, fmax = 2πωmax], the weighted Hi

∞-norm of a system is defined as

‖H‖Hi
∞

= sup
f∈[fmin, fmax]

‖H(i 2πf)‖2 (20)
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and the weighted Hi
2-norm of a system is defined as

‖H‖2Hi
2

=
1

2π

∫ fmax

fmin

‖H(i 2πf)‖F df. (21)

To visualize the quality of the reduced order system in a certain frequency range either the spectral
norm ‖HE(i 2πf)‖2 or the Frobenius norm ‖HE(i 2πf)‖F of the frequency response matrix is plotted
over the frequency. As an example, the error system HE of a with four eigenmodes reduced elastic
arm of the governor controller is plotted in Figure 3. The maximum of the spectral norm is the
weighted Hi

∞-norm of the error system. The integral under the Frobenius norm is proportional to
the frequency weighted Hi

2-norm of the error system compare Equation (21). As seen in Figure 3
the absolute error is rather small due to the small norm of the original transfer matrix ‖H‖F/2, see
Figure 4. Usually higher frequencies are more damped leading to a decline of the transfer function
for higher frequencies. In this example the norm of the transfer function between the original and the
reduced system does not match for higher frequencies. However the absolute spectral norm and the
Frobenius norm can not indicate the deviation of both systems, due to the amplitude drop caused by
damping. It is appropriate to normalize the error by division with the norm of the original system
‖H‖F/2. These errors are called relative errors and are defined as

εrel2 (f) =
‖HE(i 2πf)‖2
‖H(i 2πf)‖2

=
‖H(i 2πf)− H̄(i 2πf)‖2

‖H(i 2πf)‖2
, f ∈ [fmin, fmax], (22)

εrelF (f) =
‖HE(i 2πf)‖F
‖H(i 2πf)‖F

=
‖H(i 2πf)− H̄(i 2πf)‖F

‖H(i 2πf)‖F
, f ∈ [fmin, fmax]. (23)

In Figure 3 the relative errors are also plotted in the spectral and in the Frobenius norm. Both errors
show the same behavior and both errors can detect the deviation between original and reduced system
at a higher frequency range. As already seen in the example there is no big difference between the
spectral and the Frobenius norm because the following relation holds between the spectral and the
Frobenius norm of a matrix A

‖A‖F ≤
√

min(n,m)‖A‖2. (24)

Figure 3: Different error measures between the
original and the with 4 eigenmodes re-
duced elastic Governor arm

Figure 4: Transfer function of the original and
the reduced elastic Governor arm
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