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Figure 1: Preprocessing for the simulation of a flexible multibody system

Extracted from Doctoral Thesis Jörg Fehr [1].

Workflow of Model Reduction in Elastic Multipbody Systems

The workflow of the simulation of an elastic is shown in Fig. 1.

1 Elastic Multibody Systems with the Floating Frame of Reference
Formulation

In a floating frame of reference formulation, the motion r(R, t) of a point P of an elastic body is
separated into a usually nonlinear motion of the reference frame KR and into a motion with respect
to the reference frame rRP , see Figure 2.

1.1 Kinematics of Elastic Multibody Systems

In the deformed state at time t the position rP (t) of a point P is expressed as

rP (t) = rIR(t) +RRP + uP (t) (1)

with the nonlinear motion rIR(t) of the reference frameKR, the position of point P in the undeformed
state RRP and an elastic deformation uP (t) which is measured with respect to the motion of the
reference frame. In the following, only one elastic body will be considered. A rigid body can be
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Figure 2: Floating frame of reference formulation Figure 3: Simpack model of an elastic multibody
system (governor controller with two
flexible arms)

treated as a special case of elastic bodies where the displacement field u is zero. The rotation-matrix
ARP transforms the vector Pv expressed in the frameKP into the vector iv in the reference frameKR.
With three independent variables ϑiP the orthogonal rotation matrix ARP can be derived as shown
e.g. in [2]. Different choices of variables are possible, e.g. Euler or Cardan Angles or Euler Parameters.
Similarly to the position rP (t), the transformation matrix AIP is split in two transformation matrices

AIP (t) = AIR(t) ·ARP (t) (2)

in which AIR(t) defines a coordinate transformation from frame KR to frame KI . Here, only small
deformations are considered and the transformation matrix ARP (t) from frame KP to frame KR is
divided into a constant part ΓRP and a time dependent part I + ϑ̃P (t)

ARP (t) = ΓRP · (I + ϑ̃P (t)), (3)

where ϑ̃P (t) is the skew-symmetric matrix of the rotational angles describing the orientation of a
frame attached to point P collected in the rotation vector ϑP (t).

Two global Rayleigh-Ritz approaches are introduced to approximate the elastic deformation u(R, t) =
Φ(R) · q(t) and the small rotations ϑ(R, t) = Ψ(R) · q(t) of the body. According to [3], the ansatz
functions have to be at least elements of a complete function space, they have to be sufficiently smooth
and the geometric boundary conditions have to be fulfilled. A systematic way to find suitable ansatz
functions is the application of the FE shape functions N̄(R) constrained by the boundary conditions.
In a second step, the FE ansatz functions are reduced by a reduction method which extracts the
dominant shape functions of the system. Concerning beam and plate elements, the orientation of a
frame attached to an FE node can be expressed by the nodal rotation parameters of the nodes and
the rotational ansatz functions Ψ are part of the global FE shape functions N̄(R). However, for
Lagrangian elements with only nodal displacements as degrees of freedom, the orientation of a frame
attached to a material point P is not explicitly considered but the information about rotations is
included in the displacement field, see e.g. [4, 5]. Hence, it is possible to calculate the orientation
of a frame in the deformed state [6]. In [3, 7] it is discussed that Cartesian coordinate systems in
the undeformed state are no longer Cartesian coordinate systems in the deformed state. In order
to calculate rotational ansatz functions for nodes connected with Lagrangian elements the approach
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suggested in [8, 9] is used. This approach defines a rigid region around the nodes and reconstructs the
rotational ansatz functions from the position of three points in the rigid region. As to point P the
elastic deformation uP (t) and the small rotations ϑP (t) are now expressed as

uP (t) = Φ(RRP ) · q(t) = ΦP · q(t), ϑP (t) = Ψ(RRP ) · q(t) = ΨP · q(t). (4)

The absolute motion of a point of an arbitrary frame expressed in the referential frame is obtained by
total differentiation and reads

position rIP (t) = rIR(t0) +RRP + ΦP · q(t), (5)

orientation AIP (R, t) = AIi(t) · ΓRP · (I + ˜(ΨP · q(t))), (6)

velocity vIP =
[
I −R̃RP ΦP

]
︸ ︷︷ ︸

T tRP

·

vIR
ωIR
q̇

 , (7)

angular velocity ωIP =
[

0 I ΨP

]︸ ︷︷ ︸
T rRP

·

 vIR
ωIR
q̇P

, (8)

acceleration aIP =
[
I −R̃RP ΦP

]
︸ ︷︷ ︸

T tRP

·

aIRαIR
q̈


+ ω̃IR · ω̃IR · rRP + 2ω̃IR · ṙRP︸ ︷︷ ︸

ζtRP

, (9)

angular acceleration αIP =
[

0 I Ψp

]︸ ︷︷ ︸
T rRP

·

 aIR
αIR
q̈

+ ω̃IR · ωRP︸ ︷︷ ︸
ζrRP

, (10)

with the vector of angular velocity of frame KR which can be calculated from

ω̃IR = AT
IR · ȦIR (11)

and the angular acceleration αIR = ω̇IR.

1.2 Kinetics of a Deformable Body

By using principles of dynamics, the equation of motion of the body can be derived. Jourdain’s
principle of dynamics, also known as the principle of virtual power, is used in [3, 9] for the derivation
of the equation of motion. As an alternative, the principle of virtual work can be used for the derivation
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of the equation of motion [10]. The generalized Newton-Euler equation of the body reads mI mc̃T (q) CT
t

mc̃(q) J(q) CT
r (q)

Ct Cr(q) M e

 ·
v̇IRω̇IR
q̈

 = −

 0
0

kσ + (KeL +KeN (q)) · q +De · q̇


︸ ︷︷ ︸

he(q, q̇) internal forces

−

 mω̃IR · v̇IR +mω̃IR · ω̃IR · c+ 2mωIR · ċ(q)

mc̃(q) · ω̃IR · v̇IR + (
∑N

l=1Grl(q, q̇) · q̇l) · ωIR + ω̃IR · J(q) · ωIR
Ct · ωIR · vIR + (

∑N
l=1Gel(q̇) · q̇l) · ωIR +OeP (q)


︸ ︷︷ ︸

hω inertia forces

+

mImc̃
Ct

 · g
︸ ︷︷ ︸
hg

+

∫
Γp

 I
r̃RP

Φ(R)T

 · pbdA︸ ︷︷ ︸
hP ext. surface loads

+
∑
k

 I
r̃PRk
ΦT
k

 · F k +

 0
I

ΨT
k

 ·Lk


︸ ︷︷ ︸
hd ext. point forces

(12)

with the mass m of the body and the 3 × 3 inertia tensor J in its deformed configuration. The
location of the center of mass c and the elastic mass matrix M e ∈ RN×N , the matrices Ct and Cr

represent the coupling between the reference motion and deformations. The internal forces result from
the FE equation plus the vector kσ which represents the forces due to prestress. For the calculation
of the generalized inertia forces hω, the matrices of generalized Coriolis forces Grl, Gel and OeP can
be calculated from the global ansatz functions, compare e.g. [3, 9]. The external surface loads hP
follow from stress boundary conditions and the vector hd consists of the external point forces F k and
external point moments Lk. The mass, inertia, inertia coupling terms in the generalized mass matrix
and the generalized Coriolis forces in Equation (12) are expressed by volume integrals, compare [9].
Some of the integrals are dependent on the elastic coordinates q which would require the evaluation
of the integrals in every time step. As suggested in [11, 12, 3], the volume integrals are approximated
by a Taylor-approximation and only terms that are constant or linearly dependent in q are taken into
account. The quadratic terms usually play a minor role in the system dynamics and can be neglected
[3]. The Taylor-approximations of the volume integrals, summarized in Table 1, have to be evaluated
once before a simulation and describe together with the location of attachment points, the stiffness
and damping matrices, and the elastic ansatz functions the Standard Input Data (SID), first defined
in [13], which is needed to incorporate a flexible body into a multibody system model. How these
terms are assembled to calculate the actual forces and inertia properties within an EMBS code is
explained in detail in [3, 14, 15].

Usually, the shape functions, necessary to calculate the volume integrals from Table 1, are not available
for arbitrary bodies discretized with commercial FE programs. However, the mass invariants can also
be calculated from the assembled mass matrix of the free unconstrained body. For the reconstruction
of the mass invariants the motion space is split in three spaces by three respectively four orthogonal
projection matrices.

• First, the projection matrix which projects the motion of a free FE body to its translational
motion space St. In a pure translational motion, every node of a body moves with the same
velocity so that no strain is induced in the elastic body. This motion space is spanned by the
three orthogonal motions in directions of the Cartesian axis

q̇t(t) =


...
v(t)
0
...

 =


. . .
I
0
. . .


︸ ︷︷ ︸
St

·v(t). (13)
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• Second, the projection matrix which projects the motion of the body to a pure rotational motion
Sr, which can be calculated by considering the velocity field of an elastic body under the three
pure rotational motions qr(t) around the Cartesian axis

qr(t) =


...

R̃
T
Rk · ω(t)
ω(t)

...

 =


...

R̃
T
Rk

IT

...


︸ ︷︷ ︸
Sr

·ω(t). (14)

• Third, the projection matrix Se which projects the motion of the free elastic body to the motion
of an elastic body subject to boundary conditions. If the elastic degrees of freedom are not
reduced, the elastic projector is defined as the matrix Se = TBC , where TBC is the matrix which
projects the free body to the constrained body due to boundary conditions. It is important to
mention, that for orthogonal reduction methods no distinction Sel = Ser between left Sel and
right elastic projection matrix Ser is drawn. However, for oblique reduction techniques the left
Sel projection matrix is different to the right projection matrix Ser.

How the mass invariants are calculated with the four projection matrices is expressed in Table 1
where the asym operator extracts the asymmetric part of a matrix and Matlab notation (a, b) is used
to express the fact that only a part of a vector/matrix is calculated or used respectively.

Table 1: Elementary volume integrals

name definition calculation rule

mI
∫
K0
I dm (St)

T ·M e · St
mc0

∫
K0
RRP dm (Sr)

T ·M e · St
J0

∫
K0
R̃RP · R̃

T
RP dm (Sr)

T ·M e · Sr
C1

∫
K0

ΦP dm (St)
T ·M e · Ser

WC1
∫
K0

ΦP dm STel ·MT
e · (St)

C2
∫
K0
R̃RP ·ΦP dm (Sr)

T ·M e · Ser
WC2

∫
K0

ΦP dm STel ·MT
e · (Sr)

C3
∫
K0

(ΦP )T ·ΦP dm (Sel)
T ·M e · Ser

C4k
∫
K0
R̃RP · Φ̃

Pi

(:,k) dm C4k(:,α) = −(Sr)
T · asym(diag(ẽα) ·M e) · Ser(:,k)

C5k
∫
K0

Φ̃P (:,k) ·ΦP dm C5k(α, :) = −Sel(:,k) · asym(diag(ẽα) ·M e) · Ser
C6kl

∫
K0

Φ̃P (:,k) · Φ̃P (:,l) dm C6kl(α,β) ≈ Sel(:,k) · diag(ẽα) ·M e · diag(ẽβ) · Ser(:,l)
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