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3 Tools from Matrix Theory

To be able to acquire the basics of model reduction, some basics from the field of matrix theory are
useful. These include various norms, matrix decompositions, and system representations. A brief
overview about these topics is given in the following based on [1].

3.1 Norms

In order to be able to discuss approximation problems, it is necessary to measure the sizes of different
objects. For this purpose different norms serve as comparison criterion.

Definition 3.1 Let X be a real or complex vector space. A norm n is a function

n : X → R

which satisfies

i) n(x) ≥ 0 ∀x ∈ X and n(x) = 0⇔ x = 0 (strictly positive definite)

ii) n(λx) = |λ|n(x) ∀x ∈ X , ∀λ ∈ R resp. ∀λ ∈ C (positive homogene)

iii) n(x+ y) ≤ n(x) + n(y) (triangle inequality)

In the following we will write ||x|| instead of n(x), whereas ||x|| can be interpreted as the ’length’ of
x.

Example 3.1 Well-known examples

1. X = Rn, ||x|| :=
√
x21 + ...+ x2n (Euclidean Norm)

2. X = C([a, b]) = all continous functions f : [a, b]→ R||f ||∞, ||f(t)||∞ := max
t∈[a,b]

|f(t)|

Below some of the most common norms are introduced

Definition 3.2 (Hölder- or p-Norm) Let X = Cn and p ∈ [1,∞]

||x||p :=

(
∑n

i=1 |xi|p)(
1
p) if p ∈ [1,∞)

max
1≤i≤n

|xi| if p =∞ (3.1)

• p = 2 : Euclidean norm

• p =∞ : maximum norm

Definition 3.3 (induced matrix norm) Let A ∈ Cm×n and p, q ∈ [1,∞]

||A||p,q := sup
0 6=x∈Cn

||Ax||q
||x||p

is the (p, q) induced matrix norm of A.
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Motivation: The vector y = Ax is at most ||A||p,q ’longer’ than x.

||Ax||q ≤ ||A||p,q||x||p.

Notation for simplification ||A||p := ||A||p,p

Important norms Let A ∈ Cm×n

• ||A||1,1 = max
1≤j≤n

∑m
i=1 |Ai,j | column-sum norm

• ||A||∞,∞ = max
1≤i≤m

∑n
i=1 |Ai,j | row-sum norm

• ||A||2,2 =
√
λmax(AAH) = σ1 spectral norm 1

• ||A||F =
√∑m

i=1

∑n
j=1 |A

2
ij =

√∑r
i=1 σ

2
i (A), with r = rank(A) Frobenius norm

1λmax is the highest absolute eigenvalue and AH := A−T the conjugate transpose of A
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3.2 Singular Value Decomposition

The singular value decomposition is one of the most powerful tools to decompose a matrix. It is
closely related to the Eigenvalue decomposition, which is why a quick introduction about eigenvalues
and eigenvectors is given below.

Repetition 3.1 (eigenvalue, eigenvector) Let Aij ∈ Cn×n be a quadratic matrix. λ ∈ C is called
eigenvalue of A if there exists a vector v ∈ Cn 6= 0 with

Av = λv

v is called eigenvector to λ (one of many!)

Remarks:

• eigλ(A) := Kern(A − λIn) = v ∈ Cn0} : (A− λIn)v = 0 is called eigenspace of A to λ and
consists of all eigenvectors to λ.

• spec(A) : {λ ∈ C : det(A − λIn) = 0} is called spectrum of A and consists of all eigenvalues
of A

• If A is Hermetian (A = AH), then all eigenvalues are real

Theorem 3.1 (Eigenvalue Decomposition (EVD)) Let A ∈ Cn×n with mutually distinct eigen-
values (∀i, j : λi 6= λj), then there exists an invertible matrix U ∈ Cn×n so that

A = UΛU−1

where Λ = diag(λ1, ..., λn) the matrix with all n eigenvalues on its diagonal.

Remarks:

• An EVD is also possible with weaker assumptions

• Λ is unique if you fix the order of (λ1...λn), but U is not unique

Theorem 3.2 (Singular Value Decomposition (SVD)) Let A ∈ Cm×n with rank r. Then there
exist unitary matrices U =

[
u1 . . .um

]
∈ Cm×m, V =

[
v1 . . .vn

]
∈ Cn×n with UHU = Im, V

HV =
In and a diagonal matrix

Σ =



σ1 0
. . .

σr
0

. . .

0 ︸ ︷︷ ︸
n− r

0


m− r

∈ Rm×n, Example:


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ R4×5

with singular values σ1 ≥ ... ≥ σr ≥ 0 so that

A = UΣV H . (3.2)

The columns of U and V are called left respective right singular vectors.
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Theorem 3.3 (SVD and EVD) Let A ∈ Cm×n

i) The singular values of A are the square roots of the non-zero eigenvalues of AHA ∈ Cn×n

{σi(A)}ri=1 = {
√
λi(A

HA)}ni=1 \ {0}.

ii) The columns of U = [u1...um] resp. V = [v1...vn] of the SVD (3.2) are the eigenvectors of
AAH resp. AHA:

AAHui = σ2i ui, A
HAvi = σ2i vi for 1 ≤ i ≤ r

iii) Let A be unitary (A = AH) and positive semi-definite (∀i : λi ≥ 0), then the EVD with ordered
eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn is an SVD.

Theorem 3.4 (SVD as best low-rank approximation) Let A ∈ Cm×n with rank r and the sin-
gular value decomposition A = UΣV H with

Σ =



σ1 0
. . .

σk
. . .

σr
0

. . .

0 0


.

Define Âk := UΣ̂kV
H for arbitrary k ∈ {1, ..., r} with

Σ̂k =



σ1 0
. . .

σk
0

. . .

0 0


.

Then Âk is the optimal solution to the problem of approximating A by a matrix of lower rank with
respect to the spectral resp. Frobenius norm, i.e.

i) min
B∈Cm×n

rank(B)≤k

||A−B||2 = ||A− Âk||2 = σk+1

ii) min
B∈Cm×n

rank(B)≤k

||A−B||F = ||A− Âk||F =
√∑r

i=k+1 σ
2
i
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3.3 Linear Dynamical Systems

In this section some basic results about linear dynamical systems are presented including different
representation schemes as well as stability properties. For this it is assumed that external variables
are partitioned into input variables u and output variables y. When only the relation

y = h ∗ u (3.3)

between u and y is known one speaks of the external description of the system. If in addition the
state x is defined the internal description

ẋ = Ax+Bu, (3.4)

y = Cx+Du (3.5)

of the system can be given. The matrices A, B,C and D are linear constant operators.

3.3.1 External Description

Let u be the input function of interest u : R → U ⊂ Rp which maps t onto u(t) and y the output
function of interest y : R → Y ⊂ Rr mapping t onto y(t). Assume there exists a linear operator
S that maps the input space U to the output space Y. Then the continuous-time linear system is
characterized by

S : u→ y(u), y(t) =

∫ ∞
−∞

hx
kernel of the system

(t, τ)u(τ)dτ.

If the system fulfills h(t, τ) = 0 ∀τ > t it is causal. Furthermore, if h(t, τ) = h(t− τ) ∀t, τ is satisfied
in addition the system is time-invariant and S becomes a convolutional operator, i.e.

S : u→ y(u) = S(u) = h ∗ u,where (h ∗ u)(t) =

∫ t

−∞
h(t− τ)u(τ)dτ.

For the system dynamics of a causal and time-invariant system it can be distinguished between in-
stantaneous and purely dynamic action, i.e. the output can be build up from two terms

y(t) = h0u(t) +

∫ t

−∞
ha(t− τ)u(τ)dτ. (3.6)

In this context h0 and ha are smooth kernels implying that ~ can be expressed as h(t) = h0δ(t) +
ha(t) ∀t with δ being the Dirac delta function. Thus, h is the response of the system to the impulse
δ.
In order to calculate the input output behavior of a system it can be advantageous to do so in the
frequency domain instead of the time domain. One possibility to conduct such a transformation is via
Laplace transformation.

Definition 3.4 (Laplace transform (L-trafo)) Let f : R+
0 → Cn×m be totally integrable, then the

Laplace transform L(f) : C→ (C ∪ {∞})n×m is defined by

L(f)(s) :=

∫ ∞
0

e−stf(t)dt, s ∈ C. (3.7)
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Remarks

i) For vectors/matrix valued functions of f the definition is component wisie .

ii) Similar to a Fourier-transformation the L-trafo is a linear operator which maps function f(t), t ∈ R+

from the time domain into the frequency domain F (s) := L(f(t)), s ∈ C.

iii) For the inversion of F (s) := L(f(t)) only a small subset/region of convergence of F (s) in C is
necessary. If F (s) is defined on γ + iT, T ∈ R and locally integrable then

f(t) = L−1(F (s)(t)) = 1
2πi lim

T→∞

∫ γ+iT
γ−iT estF (s)ds, γ ∈ R what is known as Bromwhich integral.

With the help of the Laplace transform of the impulse response

H(s) = (L(h))(s), s ∈ C

the input-output mapping

L(y) = L(h ∗ u)⇒ Y (s) = H(s)U(s) (3.8)

can be determined.

H,
∫
,
∑u y

3.3.2 Internal Description

In contrast to the external description where the system is broken down to its input and output
behavior a system can be described by its internal description, which in addition uses the states x.

Definition 3.5 (continuous-time linear dynamical system) Let A(t) ∈ RN×N , B(t) ∈ RN×p,
C(t) ∈ Rr×N , D(t) ∈ Rr×p for t ∈ [0,∞), N, p, r ∈ N. Then

Σ =

{
d
dtx(t) = A(t)x(t) +B(t)u(t)

y = C(t)x(t) +D(t)u(t)
(3.9)

is a linear time variant (LTV) system with input u state x and output y. If A, B, C, D are
time invariant it is a linear time invariant (LTI) system. The solution of the LTI is a function
given by

φ(t,u, t0,x0) = eA(t−t0)x(t0) +

∫ t0

0
eA(t−τ)Bu(τ)dτ, ∀t > t0

and the output is

y(t) = Cφ(t,u, t0,x0) +Du(t).

By applying the Laplace transformation to (3.9) one obtains

sX = AX +BU ⇔X(sI −A) = BU ⇔X = (sI −A)−1BU (3.10)

Y = CX +DU , (3.11)
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where X, U , and Y are the Laplace transformed representations of x, u, or rather y. Substituting
(3.10) into (3.11) yields

Y = (D +C(sI −A)−1B)U (3.12)

from which the transfer function

H(s) = D +C(sI −A)−1B.

can easily be read off.

Transformation of the state variables Sometimes it can be advantageous to describe the system in
another set of coordinates than the original one. In order to obtain transformed state variables

x̃ = Tx, det(T ) 6= 0

the state transformation T can be used. Applying it to (3.9) yields the transformed system

˙̃x = T ẋ = TAx+ TBu =

˜A︷ ︸︸ ︷
TAT−1x̃+

˜B︷︸︸︷
TBu

y(t) = Cx+Du = CT−1︸ ︷︷ ︸
˜C

x̃+ D︸︷︷︸
˜D

u
. (3.13)

Remark: The transfer function of a system, which was transformed with an equivalence transformation
T , is equivalent to the original one H(s) = H̃(s).

3.3.3 Stability

A linear autonomous system ẋ(t) = Ax(t), A ∈ Rn×n is

• asymptotically stable if Re(λj) < 0 holds for all eigenvalues of A

• stable if and only if Re(λj) ≤ 0 holds for all eigenvalues of A and, in addition, all purely
imaginary eigenvalues have multiplicity one

• unstable if Re(λj) > 0 holds for at least one eigenvalue ofA or if one eigenvalue with Re(λj) = 0
and multiplicity
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