Chapter 7

Nonlinear Model Order Reduction

In the previous chapters, linear systems were considered, e.g., linear elasticity expressed with
a linear finite element approach of the form

Mi+Dg+Kq=7f.

Using a Petrov-Galerkin projection the reduced representation of the system could be obtained
as

WM Vagr W'D Vag+rWT'K Vg=W"'Ff.
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However, linearity is a strong assumption which is insufficient in many cases.

Origins of nonlinearities for mechanical systems:

g

e nonlinear boundary conditions -0

-
e geometric/physical nonlinearities, e.g., buckling a
e nonlinear material behaviour ﬁ

In the following a a second-order nonlinear structural dynamical system of the form

Mq+ f"(a,4,t) = f“q,q,1) (7.1)
S——— S———
internal forces and moments externally applied loads

is considered.
Goal: Find optimal basis for representing nonlinear ODE in low-dimensional subspace

Problem: We can’t simply apply formerly presented reduction approaches for a nonlinear
System

Idea: Find basis for representing the time evolution of the system dynamics (state trajectories)
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7.1 Proper Orthogonal Decomposition

(also known as Principle Component Analysis)

Collect snapshots of the (high-fidelity) dynamics at time steps

S=[aqt)) a(t2) ... alt,)]
Question: Where does this data live? In what kind of space does it live in?

We already know how we can find the Hy optimal r-dimensional approximation of a matrix
— singular value decomposition

Recap SVD: Matrix can be decomposed into

S =UXQ

S U b)) Q

singular  time dynamics

values
state trajecto- spatial
ries correlation
data POD Modes

The SVD gives us an orthogonal set of vectors (columns of U) in which the data is embedded
and indicates how important each direction is via its correlating singular values.

A low-dimensional subspace can be found by simply truncating U

V=U cRY =U.(;1:71)
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7.2 Nonlinear Reduction

Definition 7.1. A low-rank approximation of system (7.1) can be obtained with a Galerkin
projection as

T = T pint ~ P _ T pext ~ P
M
D + )
M q VT VT

fmt fext

Example 7.1 (challenges with nonlinearity).
Fd,q.0) = ¢

Two mode expansion
q(t) = a()Vi + ax(1) V2

Inner products are problematic
q(t)3 = a3V3 + 3a2a, V2Va + 30102 VI VE + a3 V3

Problem: Computation of nonlinear forces and moment terms needs to be performed in phys-
ical (high-dimensional) space and must be updated for each time step for every element of the
model
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7.3 Hyper Reduction

Idea: Evaluate nonlinear forces not for all elements but only a few selected ones

Goal: Approximate the projected forces and moments up to a certain tolerance with as few
elements as possible. This is usually done with greedy algorithms which iteratively add elements
to the reduced mesh until a tolerance criterion is met

Methods:

e Gappy POD and collocation-based methods

— use a small number of evaluations of nonlinear terms to find the solution which fits
the observations within the low-dimensional subspace spanned by the basis vectors
best

e Optimized global cubature methods

— specifically developed for second-order nonlinear dyn. systems and structural dy-
namics

— approximate projected force and moment vectors instread of nonlinear force and
moment vectors directly

— popular approach: Energy-Conserving Sampling and Weighting Method (ECSW)

7.3.1 ECSW

ECSW was developed in applications for computer graphics and animations originally.

One of the most expensive steps in evaluating f is the assembly of the internal forces and
moments from the individual element contribution

vipr=vrt 3 L; fe (7.3)
Q = ~—
e e lement tor of
~~ connectivity _associated
single  complete  matrix element forces
element FE
mesh
Goal: Approximate sum by only evaluating a small subset of the elements
e € Q. Cc O This means (). represents the reduced domain of FEms?77.

In a first step weighting factors & are introduced in (7.3) yielding

VTfmt _ VT Z €:Lgfe- (74) 0 0 0 0 0

cen 0.000

During training the weighting factors &’ are selected such that as

many of them as poosible are zero but still a high approximation 010 010 0
accuracy is reached — omitt those ones with &, = 0 ol ol o 4 1
vifrt eVt N gLlf. (7.5)
ec €,
~~

only elements
with £ >0
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While hyper-reduction methods are able to produce high-quality approximations, they possess
one big disadvantage: They are very intrusive, i.e., they require deep manipulations of the
used simulation code, e.g., evaluation of the forces at a reduced mesh. Another approach for
nonlinear MOR are non-intrusive methods which are often data-based
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7.4 MOR and ML

The basic idea is to learn system dynamics based on its behavior, that means based on high-
fidelity simulation data. One powerfull tool to extract knowledge out of data is machine learning

(ML)

7.4.1 Machine Learning

Basic task of ML: approximation of the original distribution ¢(x) of a model by fitting a
function ¢(x) to the given data D = (x;,y;)" ;. In this context & can be an arbitrary data
sample (input data) and y the corresponding observation (output data).

Machine Learning

SuperYised Learning Unsupervised Learning
- Pljedl(?t outcome based -detecting patterns features
on input data within input space.
Classification Regression
- discrete outpu - continous output

k-Nearest Neighbors

For a given input « the k ‘nearest’ points of the training data set D are
located. The associated output is then predicted based on their averaged o k=3 @
outputs L ()

=2 Y w

neighborhood of @

Linear Regression

Linear combination of the input variables weighted by parameters 3,
which are optimized to fit the data in the best manner

dl@) =B+ Y z;8 =1 z]' B

J=1
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7.4.2 Approximate Dynamics

Learn mapping from suitable input parameters X to discrete system dynamics

¢: X — [q(tl) q(ta) ... q(tn)]

This is not very efficient since the approximation is computed within the high-dimensional
original space. Thus, MOR (e.g., POD) can be used to find low-dimensional approximation

¢: X — [qty) qt2) ... q(ty)]

Thus, an approximation of the full time dynamics can be obtained ¢ = V¢ ()

phys. space phys. space

latent /red.
space

r vt x ¢ y V Y
Regression
POD

Example 7.2 (Learn state transition).  Given:

outputs q(t) = ¥(t, p,qo) of a ’black-box’ model (usually a FE-discretized PDE + solver
evaluated for certain initial conditions &y and boundary conditions b € p)

Learn a time-discrete Model approrimating the system output

1. Use POD to find low-dimensional representation of system states ¢ = V'q
2. learn state transition q(t;+1) = ¢(q(t;), p)

3. evaluate ¢ for all time steps starting at initial conditions q(tq)

7.4.3 Hybrid Models

linear MOR
ROM T FOM
low-cost high-
inaccurate cost
accurate

i high-fidelit
low-fidelity . - g lity
simulation simulation

results results

discrepancy
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ROM is not able to capture the dynamics of the FOM for nonlinear domains.
Idea: learn the ‘gap‘ between the low-fidelity and high-fidelity model

¢: X —e=q(t)—q),

with ¢ = V' q. Enriching the physical-based ROM with the so-obtained data-based model yields
the so-called hybrid model.

Example 7.3 (Enrich linear ROM with nonlinear inner forces).  Given:

FOM.‘ Mq+Qq+IS'q+fjnt — feact
ROM: Mq+ Dg+ Kq = f
Gap: e~ fi"t = fot — Mq— Dq — Kq

Learn the low-dimensional representation of the nonlinear inner forces

1. learn fmt = VT fint with regression algorithms ¢ ~ f
combine ROM with ¢ to receive Mq+ Dq+ Kq + ¢ = fet

integrate hybrid model to obtain approrimated solution q

backprojection in original (physical) space to interpret solution



