EXERCISE SHEET 5

Exercise 7: Reachability and Observability

Given is the dynamical system Σ

$$\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{A} \cdot \boldsymbol{x}(t) + \boldsymbol{B} \cdot \boldsymbol{u}(t), \quad t \in [0, T]$$
$$y(t) = \boldsymbol{C} \cdot \boldsymbol{x}(t)$$

with $\boldsymbol{x}(t) \in \mathbb{R}^N$, $u(t) \in \mathbb{R}$ and the system matrices

$$\boldsymbol{A} = \begin{pmatrix} 0 & -1 & & \\ 1 & 0 & & 0 \\ & & 1 & \\ & 0 & \ddots & \\ & & & & 1 \end{pmatrix}, \boldsymbol{B} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 1 \end{pmatrix},$$
$$\boldsymbol{C} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 \end{pmatrix}.$$

- (a) Compute the reachable subspace X_{reach} of Σ .
- (b) Compute the unobservable subspace X_{unobs} of Σ .

<u>Hint</u>: Use without proof that the unique solution of the dynamical system with initial state x_0 and input u(t) is given by

$$\boldsymbol{x}(t) = \exp(\boldsymbol{A}t) \cdot \boldsymbol{x}_0 + \int_0^t \exp(\boldsymbol{A}(t-\tau)) \cdot \boldsymbol{B}u(\tau) d\tau.$$

Exercise 8: Balanced Truncation

Let $\bar{\Sigma}_k$ be a system after applying balanced truncation to Σ . Show that $\bar{\Sigma}_k$ is indeed balanced, i.e., $\bar{P} = \bar{Q}$.

Hints

- Use the Lyapunov equations (see lecture). They have always a unique solution.
- Use that the transformed (by not yet reduced) system $\tilde{\Sigma}$ is balanced with $\tilde{P} = \tilde{Q} = \Lambda$.

Notes

• The homework is due on Sunday night February 2th, 2025 at 11:59 p.m.